Experimental Researches in Electricity.--Fourteenth Series
Author(s)
Michael Faraday
Year
1838
Volume
128
Pages
19 pages
Language
en
Journal
Philosophical Transactions of the Royal Society of London
Full Text (OCR)
XIII. Experimental Researches in Electricity.—Fourteenth Series. By Michael Faraday, Esq., D.C.L. F.R.S. Fullerian Prof. Chem. Royal Institution, Corr. Memb. Royal and Imp. Acadd. of Sciences, Paris, Petersburgh, Florence, Copenhagen, Berlin, Gottingen, Modena, Palermo, &c. &c.
Received June 21, 1838.—Read June 21, 1838.
§. 20. Nature of the electric force or forces. §. 21. Relation of the electric and magnetic forces. §. 22. Note on electrical excitation.
§. 20. Nature of the electric force or forces.
1667. The theory of induction set forth and illustrated in the three preceding series of experimental researches does not assume anything new as to the nature of the electric force or forces, but only as to their distribution. The effects may depend upon the association of one electric fluid with the particles of matter, as in the theory of Franklin, Epinus, Cavendish, and MossoTTI; or they may depend upon the association of two electric fluids, as in the theory of Dufay and Poisson; or they may not depend upon anything which can properly be called the electric fluid, but on vibrations or other affections of the matter in which they appear. The theory is unaffected by such differences in the mode of viewing the nature of the forces; and though it professes to perform the important office of stating how the powers are arranged (at least in inductive phenomena), it does not, as far as I can yet perceive, supply a single experiment which can be considered as a distinguishing test of the truth of these various views.
1668. But, to ascertain how the forces are arranged, to trace them in their various relations to the particles of matter, to determine their general laws, and also the specific differences which occur under these laws, is as important as, if not more so than, to know whether the forces reside in a fluid or not; and with the hope of assisting in this research, I shall offer some further developments, theoretical and experimental, of the conditions under which I suppose the particles of matter are placed when exhibiting inductive phenomena.
1669. The theory assumes that all the particles, whether of insulating or conducting matter, are as wholes conductors.
1670. That not being polar in their normal state, they can become so by the influence of neighbouring charged particles, the polar state being developed at the instant, exactly as in an insulated conducting mass consisting of many particles.
1671. That the particles when polarized are in a forced state, and tend to return to their normal or natural condition.
1672. That being as wholes conductors, they can readily be charged, either bodily or polarity.
1673. That particles which being contiguous are in the line of inductive action can communicate or transfer their polar forces one to another more or less readily.
1674. That those doing so less readily require the polar forces to be raised to a higher degree before this transference or communication takes place.
1675. That the ready communication of forces between contiguous particles constitutes conduction, and the difficult communication insulation; conductors and insulators being bodies whose particles naturally possess the property of communicating their respective forces easily or with difficulty, and bodies having these differences just as they have differences of any other natural property.
1676. That ordinary induction is the effect resulting from the action of matter charged with excited or free electricity upon insulating matter, tending to produce in it an equal amount of the contrary state.
1677. That it can do this only by polarizing the particles contiguous to it, which perform the same office to the next, and these again to those beyond; and that thus the action is propagated from the excited body to the next conducting mass, and there renders the contrary force evident in consequence of the effect of communication which supervenes in the conducting mass upon the polarization of the particles of that body (1675.).
1678. That therefore induction can only take place through insulators; that induction is insulation, it being the necessary consequence of the state of the particles and the mode in which the influence of electrical forces is transferred or transmitted across such insulating media.
1679. The particles of an insulating dielectric whilst under induction may be compared to a series of small magnetic needles, or more correctly still to a series of small insulated conductors. If the space round a charged globe were filled with a mixture of an insulating dielectric, as oil of turpentine or air, and small globular conductors, as shot, the latter being at a little distance from each other so as to be insulated, then these would in their condition and action exactly resemble what I consider to be the condition and action of the particles of the insulating dielectric itself. If the globe were charged, these little conductors would all be polar; if the globe were discharged, they would all return to their normal state, to be polarized again upon the recharging of the globe. The state developed by induction through such particles on a mass of conducting matter at a distance would be of the contrary kind, and exactly equal in amount to the force in the inductric globe. There would be a lateral diffusion of force (1224. 1297.), because each polarized sphere would be in an active or tense re-
lation to all those contiguous to it, just as one magnet can affect two or more magnetic needles near it, and these again a still greater number beyond them. Hence would result the production of curved lines of inductive force if the inducteous body in such a mixed dielectric were an uninsulated metallic ball (1219.&c.) or other properly shaped mass. Such curved lines are the consequences of the two electric forces arranged as I have assumed them to be: and, that the inductive force can be directed in such curved lines is the strongest proof of the presence of the two powers and the polar condition of the dielectric particles.
1680. I think it is evident that in the case stated, action at a distance can only result through an action of the contiguous conducting particles. There is no reason why the inductric body should polarize or affect distant conductors and leave those near it, namely the particles of the dielectric, unaffected: and everything in the form of fact and experiment with conducting masses or particles of a sensible size contradicts such a supposition.
1681. A striking character of the electric power is that it is limited and exclusive, and that the two forces being always present are exactly equal in amount. The forces are related in one of two ways, either as in the natural normal condition of an uncharged insulated conductor; or as in the charged state, the latter being a case of induction.
1682. Cases of induction are easily arranged so that the two forces being limited in their direction shall present no phenomena or indications external to the apparatus employed. Thus if a Leyden jar, having its external coating a little higher than the internal, be charged and then its charging ball and rod removed, such jar will present no electrical appearances so long as its outside is uninsulated. The two forces which may be said to be in the coatings, or in the particles of the dielectric contiguous to them, are entirely engaged to each other by induction through the glass; and a carrier ball (1181.) applied either to the inside or outside of the jar will show no signs of electricity. But if the jar be insulated, and the charging ball and rod, in an uncharged state and suspended by an insulating thread of white silk, be restored to their place, then the part projecting above the jar will give electrical indications and charge the carrier, and at the same time the outside coating of the jar will be found in the opposite state and inductric towards external surrounding objects.
1683. These are simple consequences of the theory. Whilst the charge of the inner coating could induce only through the glass towards the outer coating, and the latter contained no more of the contrary force than was equivalent to it, no induction external to the jar could be perceived; but when the inner coating was extended by the rod and ball so that it could induce through the air towards external objects, then the tension of the polarized glass molecules would, by their tendency to return to the normal state, fall a little, and a portion of the charge passing to the surface of this new part of the inner conductor, would produce inductive action through the air towards distant objects, whilst at the same time a part of the force in the outer coating previously directed inwards would now be at liberty, and indeed be constrained to
induct outwards through the air, producing in that outer coating what is sometimes called, though I think very improperly, free charge. If a small Leyden jar be converted into that form of apparatus usually known by the name of the electric well, it will illustrate this action very completely.
1684. The terms *free charge* and *dissimulated electricity* convey therefore erroneous notions if they are meant to imply any difference as to the mode or kind of action. The charge upon an insulated conductor in the middle of a room is in the same relation to the walls of that room as the charge upon the inner coating of a Leyden jar is to the outer coating of the same jar. The one is not more *free* or more *dissimulated* than the other, and when sometimes we make electricity appear where it was not evident before, as upon the outside of a charged jar when, after insulating it, we touch the inner coating, it is only because we divert more or less of the inductive force from one direction into another; for not the slightest change is in such circumstances impressed upon the character or action of the force.
1685. Having given this general theoretical view, I will now notice particular points relating to the nature of the assumed electric polarity of the insulating dielectric particles.
1686. The polar state may be considered in common induction as a forced state, the particles tending to return to their normal condition. It may probably be raised to a very high degree by approximation of the inductric and inducteous bodies or by other circumstances; and the phenomena of electrolyzation (861. 1652. 1706) seem to imply that the proportion of power which can thus be accumulated on a single particle is enormous. Hereafter we may be able to compare corpuscular forces, as those of gravity, cohesion, electricity, and chemical affinity, and in some way or other from their effects deduce their relative equivalents; at present we are not able to do so, but there seems no reason to doubt that their electrical, which are at the same time their chemical, forces (891. 918.) will be by far the most energetic.
1687. I do not consider the powers when developed by the polarization as limited to two distinct points or spots on the surface of each particle to be considered as the poles of an axis, but as resident on large portions of that surface, as they are upon the surface of a conductor of sensible size when it is thrown into a polar state. But it is very probable, notwithstanding, that the particles of different bodies may present specific differences in this respect, the powers not being equally diffused though equal in quantity; other circumstances also, as form and quality, giving to each a peculiar polar relation. It is perhaps to the existence of some such differences as these that we may attribute the specific actions of the different dielectrics in relation to discharge (1394. 1508.). Thus with respect to oxygen and nitrogen singular contrasts were presented when spark and brush discharge were made to take place in these gases, as may be seen by reference to the Table in paragraph 1518 of the Thirteenth Series; for
with nitrogen, when the small negative or the large positive ball was rendered inductric, the effects corresponded with those which in oxygen were produced when the small positive or the large negative was rendered inductric.
1688. In such solid bodies as glass, lac, sulphur, &c., the particles appear to be able to polarize in all directions, for a mass when experimented upon so as to ascertain its inductive capacity in three or more directions (1690.), gives no indication of a difference. Now as the particles are fixed in the mass, and as the direction of the induction through them must change with its change relative to the mass, the constant effect indicates that they can polarize electrically in any direction. This accords with the view already taken of each particle as a whole being a conductor (1669.), and, as an experimental fact, helps to confirm that view.
1689. But though particles may thus polarize in any direction under the influence of powers which are probably of extreme energy (1686.), it does not follow that each particle may not tend to polarize to a greater degree, or with more facility, in one direction than another; or that different kinds may not have specific differences in this respect, as they have differences of conducting and other powers (1296. 1326. 1395.). I sought with great anxiety for a relation of this nature; and selecting crystalline bodies as those in which all the particles are symmetrically placed, and therefore best fitted to indicate any result which might depend upon variation of the direction of the forces to the direction of the particles in which they were developed, experimented very carefully with them. I was the more strongly stimulated to this inquiry by the beautiful electrical condition of those crystalline bodies tourmaline and boracite, and hoped also to discover a relation between electric polarity and that of crystallization, or even of cohesion itself (1316.). My experiments have not established any connexion of the kind sought for. But as I think it of equal importance to show either that there is or is not such a relation, I shall briefly describe the results.
1690. The form of experiment was as follows. A brass ball 0·73 of an inch in diameter, fixed at the end of a horizontal brass rod, and that at the end of a brass cylinder, was by means of the latter connected with a large Leyden battery (291.) by perfect metallic communications, the object being to keep that ball, by its connexion with the charged battery in an electrified state, very nearly uniform, for half an hour at a time. This was the inductric ball. The inducteous ball was the carrier of the torsion electrometer (1229. 1314.); and the dielectric between them was a cube cut from a crystal, so that two of its faces should be parallel to the optical axis, whilst the other four were perpendicular to it. A small projecting piece of shell-lac was fixed on the inductric ball at that part opposite to the attachment of the brass rod, for the purpose of preventing actual contact between the ball and the crystal cube. A coat of shell-lac was also attached to that side of the carrier ball which was to be towards the cube, being also that side which was furthest from the repelled ball in the electrometer when placed in its position in that instrument. The cube was covered
with a thin coat of shell-lac dissolved in alcohol, to prevent the deposition of damp upon its surface from the air. It was supported upon a small table of shell-lac fixed on the top of a stem of the same substance, the latter being of sufficient strength to sustain the cube, and yet flexible enough from its length to act as a spring, and allow the cube to bear, when in its place, against the shell-lac on the inductric ball.
1691. Thus it was easy to bring the inductive ball always to the same distance from the inductric ball, and to uninsulate and insulate it again in its place; and then, after measuring the force in the electrometer (1181.), to return it to its place opposite to the inductric ball for a second observation. Or it was easy by revolving the stand which supported the cube to bring four of its faces in succession towards the inductric ball, and so observe the force when the lines of inductive action (1304.) coincided with, or were transverse to, the direction of the optical axis of the crystal. Generally from twenty to twenty-eight observations were made in succession upon the four vertical faces of a cube, and then an average expression of the inductive force was obtained, and compared with similar averages obtained at other times, every precaution being taken to secure accurate results.
1692. The first cube used was of rock crystal; it was 0·7 of an inch in the side. It presented a remarkable and constant difference, the average of not less than 197 observations giving 100 for the specific inductive capacity in the direction coinciding with the optical axis of the cube, whilst 93·59 and 93·31 were the expressions for the two transverse directions.
1693. But with a second cube of rock crystal corresponding results were not obtained. It was 0·77 of an inch in the side. The average of many experiments gave 100 for the specific inductive capacity coinciding with the direction of the optical axis, and 98·6 and 99·92 for the two other directions.
1694. Lord Ashley, whom I have found ever ready to advance the cause of science, obtained for me the loan of three globes of rock crystal belonging to Her Grace the Duchess of Sutherland for the purposes of this investigation. Two had such fissures as to render them unfit for the experiments (1193.1698.). The third, which was very
superior, gave me no indications of any difference in the inductive force for different directions.
1695. I then used cubes of Iceland spar. One 0·5 of an inch in diameter gave 100 for the axial direction, and 98·66 and 95·74 for the two cross directions. The other, 0·8 of an inch in the side, gave 100 for the axial direction, whilst 101·73 and 101·86 were the numbers for the cross direction.
1696. Besides these differences there were others, which I do not think it needful to state, since the main point is not confirmed. For though the experiments with the first cube raised great expectation, they have not been generalized by those which followed. I have no doubt of the results as to that cube, but they cannot as yet be referred to crystallization. There are in the cube some faintly coloured layers parallel to the optical axis, and the matter which colours them may have an influence; but then the layers are also nearly parallel to a cross direction, and if at all influential should show some effect in that direction, which they did not.
1697. In some of the experiments one half or one part of a cube showed a superiority to another part, and this I could not trace to any charge the different parts had received. It was found indeed that the varnishing of the cubes was sufficient to prevent them receiving any charge, except (in a few experiments) a small degree of the negative state, or that which was contrary to the state of the inductric ball (1564. 1566.).
1698. I think it right to say that, as far as I could perceive, the insulating character of the cubes used was perfect, or at least so nearly perfect as to bear a comparison with shell-lac, glass, &c. As to the cause of the differences, other than regular crystalline structure, there may be several. Thus minute fissures in the crystal insensible to the eye may be so disposed as to produce a sensible electrical difference (1193.). Or the crystallization may be irregular: or the substance may not be quite pure; and if we consider how minute a quantity of matter will alter greatly the conducting power of water, it will seem not unlikely that a little extraneous matter diffused through the whole or part of a cube, may produce effects sufficient to account for all the irregularities of action that have been observed.
1699. An important inquiry regarding the electrical polarity of the particles of an insulating dielectric, is, whether it be the molecules of the particular substance acted on, or the component or ultimate particles, which thus act the part of insulated conducting polarizing portions (1669.).
1700. The conclusion I have arrived at is, that it is the molecules of the substance which polarize as wholes (1347.): and that however complicated the composition of a body may be, all those particles or atoms which are held together by chemical affinity to form one molecule of the resulting body, act as one conducting mass or particle when inductive phenomena and polarization are produced in the substance of which it is a part.
1701. This conclusion is founded on several considerations. Thus if we observe the insulating and conducting power of elements when they are used as dielectrics, we find some, as sulphur, phosphorus, chlorine, iodine, &c., whose particles insulate, and therefore polarize in a high degree; whereas others, as the metals, give scarcely any indication of possessing a sensible proportion of this power (1328.), their particles freely conducting one to another. Yet when these enter into combination they form substances having no direct relation apparently, in this respect, to their elements; for water, sulphuric acid, and such compounds formed of insulating elements, conduct by comparison freely; whilst oxide of lead, flint glass, borate of lead, and other metallic compounds containing very high proportions of conducting matter, insulate excellently well. Taking oxide of lead therefore as the illustration, I conceive that it is not the particles of oxygen and lead which polarize separately under the act of induction, but the molecules of oxide of lead which exhibit this effect, all the elements of one particle of the resulting body, being held together as parts of one conducting individual by the bonds of chemical affinity, which is but another term for electrical force (918.).
1702. In bodies which are electrolytes we have still further reason for believing in such a state of things. Thus when water, chloride of tin, iodide of lead, &c. in the solid state are between the electrodes of the voltaic battery, their particles polarize as those of any other insulating dielectric do (1164.); but when the liquid state is conferred on these substances the polarized particles divide, the two halves, each in a highly charged state, travelling onwards until they meet other particles in an opposite and equally charged state, with which they combine, to the neutralization of their chemical, i.e. their electrical forces, and the reproduction of compound particles, which can again polarize as wholes, and again divide to repeat the same series of actions (1347.).
1703. But though electrolytic particles polarize as wholes, it would appear very evident that in them it is not a matter of entire indifference how the particle polarizes (1689.), since, when free to move (380, &c.) the polarities are ultimately distributed in reference to the elements; and sums of force equivalent to the polarities, and very definite in kind and amount, separate, as it were, from each other, and travel onwards with the elementary particles. And though I do not pretend to know what an atom is, or how it is associated or endowed with electrical force, or how this force is arranged in the cases of combination and decomposition, yet the strong belief I have in the electrical polarity of particles when under inductive action, and the bearing of such an opinion on the general effects of induction, whether ordinary or electrolytic, will be my excuse, I trust, for a few hypothetical considerations.
1704. In electrolyzation it appears that the polarized particles would (because of the gradual change which has been induced upon the chemical, i.e. the electrical forces of their elements (918.)) rather divide than discharge to each other without division (1348.); for if their division, i.e. their decomposition and recombination, be
prevented by giving them the solid state, then they will insulate electricity perhaps a hundredfold more intense than that necessary for their electrolyzation (419, &c.). Hence the tension necessary for direct conduction in such bodies appears to be much higher than that for decomposition (419. 1164. 1344.).
1705. The remarkable stoppage of electrolytic conduction by solidification (380. 1358.), is quite consistent with these views of the dependence of that process on the polarity which is common to all insulating matter when under induction, though attended by such peculiar electro-chemical results in the case of electrolytes. Thus it may be expected that the first effect of induction is so to polarize and arrange the particles of water that the positive or hydrogen pole of each shall be from the positive electrode and towards the negative electrode, whilst the negative or oxygen pole of each shall be in the contrary direction; and thus when the oxygen and hydrogen of a particle of water have separated, passing to and combining with other hydrogen and oxygen particles, unless these new particles of water could turn round they could not take up that position necessary for their successful electrolytic polarization. Now solidification, by fixing the water particles and preventing them from assuming that essential preliminary position, prevents also their electrolysis; and so the transfer of forces in that manner being prevented (1347.1703.), the substance acts as an ordinary insulating dielectric (for it is evident by former experiments (419. 1704.) that the insulating tension is higher than the electrolytic tension), induction through it rises to a higher degree, and the polar condition of the molecules as wholes, though greatly exalted, is still securely maintained.
1706. When decomposition happens in a fluid electrolyte, I do not suppose that all the molecules in the same sectional plane (1634.) part with and transfer their electrified particles or elements at once. Probably the discharge force for that plane is summed up on one or a few particles, which decomposing, travelling and recombining, restore the balance of forces, much as in the case of spark disruptive discharge (1406.); for as those molecules resulting from particles which have just transferred power must by their position (1705.) be less favourably circumstanced than others, so there must be some which are most favourably disposed, and these, by giving way first, will for the time lower the tension and produce discharge.
1707. In former investigations of the action of electricity (821, &c.) it was shown, for many satisfactory cases, that the quantity of electric power transferred onwards was in proportion to and was definite for a given quantity of matter moving as anion or cathion onwards in the electrolytic line of action; and there was strong reason to believe that each of the particles of matter then dealt with, had associated with it a definite amount of electrical force, constituting its force of chemical affinity, the chemical equivalents and the electro-chemical equivalents being the same (836.). It was also found with few, and I may now perhaps say with no exceptions (1341.), that only those compounds containing elements in single proportions could exhibit the characters and phenomena of electrolytes (697.); oxides, chlorides, and other bodies
containing more than one proportion of the electro-negative element refusing to decompose under the influence of the electric current.
1708. Probable reasons for these conditions and limitations arise out of the molecular theory of induction. Thus when a liquid dielectric, as chloride of tin, consists of molecules, each composed of a single particle of each of the elements, then as these can convey equivalent opposite forces by their separation in opposite directions, both decomposition and transfer can result. But when the molecules, as in the bichloride of tin, consist of one particle or atom of one element, and two of the other, then the simplicity with which the particles may be supposed to be arranged and to act, is destroyed. And, though it may be conceived that when the molecules of bichloride of tin are polarized as wholes by the induction across them, the positive polar force might accumulate on the one particle of tin whilst the negative polar force accumulated on the two particles of chlorine associated with it, and that these might respectively travel right and left to unite with other two of chlorine and one of tin, in analogy with what happens in cases of compounds consisting of single proportions, yet this is not altogether so evident or probable. For when a particle of tin combines with two of chlorine, it is difficult to conceive that there should not be some relation of the three in the resulting molecule analogous to fixed position, the one particle of metal being perhaps symmetrically placed in relation to the two of chlorine: and, it is not difficult to conceive of such particles that they could not assume that position dependent both on their polarity and the relation of their elements; which appears to be the first step in the process of electrolyzation (1345. 1705.).
§. 21. Relation of the electric and magnetic forces.
1709. I have already ventured a few speculations respecting the probable relation of magnetism, as the transverse force of the current, to the divergent or transverse force of the lines of inductive action belonging to static electricity (1658, &c.).
1710. In the further consideration of this subject it appeared to me to be of the utmost importance to ascertain, if possible, whether this lateral action which we call magnetism, or sometimes the induction of electrical currents (26. 1048, &c.), is extended to a distance by the action of the intermediate particles in analogy with the induction of static electricity, or the various effects, such as conduction, discharge, &c., which are dependent on that induction; or, whether its influence at a distance is altogether independent of such intermediate particles (1662.).
1711. I arranged two magneto-electric helices with iron cores end to end, but with an interval of an inch and three quarters between them, in which interval was placed the end or pole of a bar magnet. It is evident that on moving the magnetic pole from one core towards the other, a current would tend to form in both helices, in the one because of the lowering, and in the other because of the strengthening of the magnetism induced in the respective soft iron cores. The helices were connected together, and also with a galvanometer, so that these two currents should coincide in
direction, and tend by their joint force to deflect the needle of the instrument. The whole arrangement was so effective and delicate, that moving the magnetic pole about the eighth of an inch to and fro two or three times, in periods equal to those required for the vibrations of the galvanometer needle, was sufficient to cause considerable vibration in the latter; thus showing readily the consequence of strengthening the influence of the magnet on the one core and helix, and diminishing it on the other.
1712. Then without disturbing the distances of the magnet and cores, plates of substances were interposed. Thus calling the two cores A and B, a plate of shell-lac was introduced between the magnetic pole and A for the time occupied by the needle in swinging one way; then it was withdrawn for the time occupied in the return swing; introduced again for another equal portion of time; withdrawn for another portion, and so on eight or nine times; but not the least effect was observed on the needle. In other cases the plate was alternated, i.e. it was introduced between the magnet and A for one period of time, withdrawn and introduced between the magnet and B for the second period, withdrawn and restored to its first place for the third period, and so on, but with no effect on the needle.
1713. In these experiments shell-lac in plates 0·9 of an inch in thickness, sulphur in a plate 0·9 of an inch in thickness, and copper in a plate 0·7 of an inch in thickness were used without any effect. And I conclude that bodies, contrasted by the extremes of conducting and insulating power, and opposed to each other as strongly as metals, air, and sulphur, show no difference with respect to magnetic forces when placed in their lines of action, at least under the circumstances described.
1714. With a plate of iron, or even a small piece of that metal, as the head of a nail, a very different effect was produced, for then the galvanometer immediately showed its sensibility, and the perfection of the general arrangement.
1715. I arranged matters so that a plate of copper 0·2 of an inch in thickness, and ten inches in diameter, should have the part near the edge interposed between the magnet and the core, in which situation it was first rotated rapidly, and then held quiescent alternately, for periods according with that required for the swinging of the needle; but not the least effect upon the galvanometer was produced.
1716. A plate of shell-lac 0·6 of an inch in thickness was applied in the same manner, but whether rotating or not it produced no effect.
1717. Occasionally the plane of rotation was directly across the magnetic curve: at other times it was made as oblique as possible; the direction of the rotation being also changed in different experiments, but not the least effect was produced.
1718. I now removed the helices with their soft iron cores, and replaced them by two flat helices wound upon card board, each containing forty-two feet of silked copper wire, and having no associated iron. Otherwise the arrangement was as before, and exceedingly sensible; for a very slight motion of the magnet between the helices produced an abundant vibration of the galvanometer needle.
1719. The introduction of plates of shell-lac, sulphur, or copper into the intervals
between the magnet and these helices (1713.), produced not the least effect, whether the former were quiescent or in rapid revolution (1715.). So here no evidence of the influence of the intermediate particles could be obtained (1710.).
1720. The magnet was then removed and replaced by a flat helix, corresponding to the two former, the three being parallel to each other. The middle helix was so arranged that a voltaic current could be sent through it at pleasure. The former galvanometer was removed, and one with a double coil employed, one of the lateral helices being connected with one coil, and the other helix with the other coil, in such manner that when a voltaic current was sent through the middle helix its inductive action (26.) on the lateral helices should cause currents in them, having contrary directions in the coils of the galvanometer. By a little adjustment of the distances these induced currents were rendered exactly equal, and the galvanometer needle remained stationary notwithstanding their frequent production in the instrument. I will call the middle coil C, and the external coils A and B.
1721. A plate of copper 0·7 of an inch thick and six inches square, was placed between coils C and B, their respective distances remaining unchanged; and then a voltaic current from twenty pairs of 4-inch plates was sent through the coil C, and intermittent, in periods fitted to produce an effect on the galvanometer (1712.), if any difference had been produced in the effect of C on A and B. But notwithstanding the presence of air in one interval and copper in the other, the inductive effect was exactly alike on the two coils, and as if air had occupied both intervals. So that notwithstanding the facility with which any induced currents might form in the thick copper plate, the coil outside of it was just as much affected by the central helix C as if no such conductor as the copper had been there.
1722. Then, for the copper plate was substituted one of sulphur 0·9 of an inch thick; still the results were exactly the same, i.e. there was no action at the galvanometer.
1723. Thus it appears that when a voltaic current in one wire is exerting its inductive action to produce a contrary or a similar current in a neighbouring wire, according as the primary current is commencing or ceasing, it makes not the least difference whether the intervening space is occupied by such insulating bodies as air, sulphur and shell-lac, or such conducting bodies as copper, and the other non-magnetic metals.
1724. A correspondent effect was obtained with the like forces when resident in a magnet thus. A single flat helix (1718.) was connected with a galvanometer, and a magnetic pole placed near to it; then by moving the magnet to and from the helix, or the helix to and from the magnet, currents were produced indicated by the galvanometer.
1725. The thick copper plate (1721.) was afterwards interposed between the magnetic pole and the helix; nevertheless on moving these to and fro, effects, exactly the same in direction and amount, were obtained as if the copper had not been there. So also on introducing a plate of sulphur into the interval, not the least influence on the currents produced by motion of the magnet or coils could be obtained.
1726. These results, with many others which I have not thought it needful to de-
scribe, would lead to the conclusion that (judging by the amount of effect produced at a distance by forces transverse to the electric current, i.e. magnetic forces,) the intervening matter, and therefore the intervening particles, have nothing to do with the phenomena; or in other words, that though the inductive force of static electricity is transmitted to a distance by the action of the intermediate particles (1164. 1666.), the transverse inductive force of currents, which can also act at a distance, is not transmitted by the intermediate particles in a similar way.
1727. It is however very evident that such a conclusion cannot be considered as proved. Thus when the metal copper is between the pole and the helix (1715. 1719. 1725.) or between the two helices (1721.) we know that its particles are affected, and can by proper arrangements make their peculiar state for the time very evident by the production of either electrical or magnetical effects. It seems impossible to consider this effect on the particles of the intervening matter as independent of that produced by the inductric coil or magnet C, on the inducteous coil or core A (1715. 1721.) for since the inducteous body is equally affected by the inductric body whether these intervening and affected particles of copper are present or not (1723. 1725.), such a supposition would imply that the particles so affected had no reaction back on the original inductric forces. The more reasonable conclusion, as it appears to me, is, to consider these affected particles as efficient in continuing the action onwards from the inductric to the inducteous body, and by this very communication producing the effect of no loss of induced power at the latter.
1728. But then it may be asked what is the relation of the particles of insulating bodies, such as air, sulphur, or lac, when they intervene in the line of magnetic action? The answer to this is at present merely conjectural. I have long thought there must be a particular condition of such bodies corresponding to the state which causes currents in metals and other conductors (26. 53. 191. 201. 213.) and considering that the bodies are insulators one would expect that state to be one of tension. I have by rotating non-conducting bodies near magnetic poles and poles near them, and also by causing powerful electric currents to be suddenly formed and to cease around and about insulators in various directions, endeavoured to make some such state sensible, but have not succeeded. Nevertheless, as any such state must be of exceedingly low intensity, because of the feeble intensity of the currents which are used to induce it, it may well be that the state may exist, and may be discoverable by some more expert experimentalist, though I have not been able to make it sensible.
1729. It appears to me possible, therefore, and even probable, that magnetic action may be communicated to a distance by the action of the intervening particles, in a manner having a relation to the way in which the inductive forces of static electricity are transferred to a distance (1677.) the intervening particles assuming for the time more or less of a peculiar condition, which (though with a very imperfect idea) I have several times expressed by the term electro-tonic state (60. 242. 1114. 1661.). I hope it will not be understood that I hold the settled opinion that such is the case. I would
rather in fact have proved the contrary, namely, that magnetic forces are quite independent of the matter intervening between the inductric and the inducteous bodies; but I cannot get over the difficulty presented by such substances as copper, silver, lead, gold, carbon, and even aqueous solutions (201. 213.), which though they are known to assume a peculiar state whilst intervening between the bodies acting and acted upon (1727.), no more interfere with the final result than those which have as yet had no peculiarity of condition discovered in them.
1730. A remark important to the whole of this investigation ought to be made here. Although I think the galvanometer used as I have described it (1711. 1720.) is quite sufficient to prove that the final amount of action on each of the two coils or the two cores A and B (1713. 1719.) is equal, yet there is an effect which may be consequent on the difference of action of two interposed bodies which it would not show. As time enters as an element into these actions* (125.), it is very possible that the induced actions on the helices or cores A, B, though they rise to the same degree when air and copper, or air and lac are contrasted as intervening substances, do not do so in the same time; and yet, because of the length of time occupied by a vibration of the needle, this difference may not be visible, both effects rising to their maximum in periods so short as to make no sensible portion of that required for a vibration of the needle, and so exert no visible influence upon it.
1731. If the lateral or transverse force of electrical currents, or what appears to be the same thing, magnetic power, could be proved to be influential at a distance independently of the intervening contiguous particles, then, as it appears to me, a real distinction, of a high and important kind, would be established between the natures of these two forces (1654. 1664.). I do not mean that the powers are independent of each other and might be rendered separately active, on the contrary they are probably essentially associated (1654.), but it by no means follows that they are of the same nature. In common statical induction, in conduction, and in electrolyzation, the forces at the opposite extremities of the particles which coincide with the lines of action, and have commonly been distinguished by the term electric, are polar, and in the cases of contiguous particles act only to insensible distances; whilst those which are transverse to the direction of these lines, and are called magnetic, are circumferential, act at a distance, and if not through the intermediation of the intervening particles, have their relations to ordinary matter entirely unlike those of the electrical forces with which they are associated.
1732. To decide this question of the identity or distinction of the two kinds of power, and establish their true relation, would be exceedingly important. The question seems fully within the reach of experiment, and offers a high reward to him who will attempt its settlement.
* See Annales de Chimie, 1833, tom. li. pp. 422, 428.
1733. I have already expressed a hope of finding an effect or condition which shall be to statical electricity what magnetic force is to current electricity (1658.) If I could have proved to my own satisfaction that magnetic forces extended their influence to a distance by the conjoined action of the intervening particles in a manner analogous to that of electrical forces, then I should have thought that the lateral tension of the lines of inductive action (1659.), or that state so often hinted at as the electro-tonic state (1661. 1662.), was this related condition of statical electricity.
1734. It may be said that the state of no lateral action is to static or inductive force the equivalent of magnetism to current force; but that can only be upon the view that electric and magnetic action are in their nature essentially different (1664.). If they are the same power, the whole difference in the results being the consequence of the difference of direction, then the normal or undeveloped state of electric force will correspond with the state of no lateral action of the magnetic state of the force; the electric current will correspond with the lateral effects commonly called magnetism: but the state of static induction which is between the normal condition and the current will still require a corresponding lateral condition in the magnetic series, presenting its own peculiar phenomena; for it can hardly be supposed that the normal electric and the inductive or polarized electric condition can both have the same lateral relation. If magnetism be a separate and a higher relation of the powers developed, then perhaps the argument which presses for this third condition of that force would not be so strong.
1735. I cannot conclude these general remarks upon the relation of the electric and magnetic forces without expressing my surprise at the results obtained with the copper plate (1721. 1725.). The experiments with the flat helices represent one of the simplest cases of the induction of electrical currents (1720.); the effect, as is well known, consisting in the production of a momentary current in a wire at the instant when a current in the contrary direction begins to pass through a neighbouring parallel wire, and the production of an equally brief current in the reverse direction when the determining current is stopped (26.). Such being the case, it seems very extraordinary that this induced current which takes place in the helix A when there is only air between A and C (1720.) should be equally strong when that air is replaced by an enormous mass of that excellently conducting metal copper (1721.). It might have been supposed that this mass would have allowed of the formation and discharge of almost any quantity of currents in it, which the helix C was competent to induce, and so in some degree have diminished if not altogether prevented the effect in A: instead of which, though we can hardly doubt that an infinity of currents are formed at the moment in the copper plate, still not the smallest diminution or alteration of the effect in A appears. Almost the only way of reconciling this effect with generally received notions is, as it appears to me, to admit that magnetic action is communicated by the action of the intervening particles (1729. 1733.).
1736. This condition of things, which is very remarkable, accords perfectly with
the effects observed in solid helices where wires are coiled over wires to the amount of five or six or more layers in succession, no diminution of effect on the outer ones being occasioned by those within.
§. 22. Note on electrical excitation.
1737. That the different modes in which electrical excitement takes place will some day or other be reduced under one common law can hardly be doubted, though for the present we are bound to admit distinctions. It will be a great point gained when these distinctions are, not removed but, understood.
1738. The strict relation of the electrical and chemical powers renders the chemical mode of excitement the most instructive of all, and the case of two isolated combining particles is probably the simplest that we possess. Here however the action is local, and we still want such a test of electricity as shall apply to it, to cases of current electricity, and also to those of static induction. Whenever by virtue of the previously combined condition of some of the acting particles (923.) we are enabled, as in the voltaic pile, to expand or convert the local action into a current, then chemical action can be traced through its variations to the production of all the phenomena of tension and the static state, these being in every respect the same as if the electric forces producing them had been developed by friction.
1739. It was Berzelius, I believe, who first spoke of the aptness of certain particles to assume opposite states when in presence of each other (959.). Hypothetically we may suppose these states to increase in intensity by increased approximation, or by heat, &c. until at a certain point combination occurs, accompanied by such an arrangement of the forces of the two particles between themselves as is equivalent to a discharge, producing at the same time a particle which is throughout a conductor (1700.).
1740. This aptness to assume an excited electrical state (which is probably polar in those forming non-conducting matter) appears to be a primary fact, and to partake of the nature of induction (1162.), for the particles do not seem capable of retaining their particular state independently of each other (1177.) or of matter in the opposite state. What appears to be definite about the particles of matter is their assumption of a particular state, as the positive or negative, in relation to each other, and not of either one or other indifferently; and also the acquirement of force up to a certain amount.
1741. It is easily conceivable that the same force which causes local action between two free particles shall produce current force if one of the particles is previously in combination, forming part of an electrolyte (923. 1738.). Thus a particle of zinc, and one of oxygen, when in presence of each other, exert their inductive forces (1740.), and these at last rise up to the point of combination. If the oxygen be previously in union with hydrogen, it is held so combined by an analogous exertion and arrangement of the forces; and as the forces of the oxygen and hydrogen are for the time of combination mutually engaged and related, so when the superior relation of the forces be-
between the oxygen and zinc come into play, the induction of the former or oxygen towards the metal cannot be brought on and increased without a corresponding deficiency in its induction towards the hydrogen with which it is in combination (for the amount of force in a particle is considered as definite), and the latter therefore has its force turned towards the oxygen of the next particle of water; thus the effect may be considered as extended to sensible distances, and thrown into the condition of static induction, which being discharged and then removed by the action of other particles produces currents.
1742. In the common voltaic battery, the current is occasioned by the tendency of the zinc to take the oxygen of the water from the hydrogen, the effective action being at the place where the oxygen leaves the previously existing electrolyte. But Schönenbein has arranged a battery in which the effective action is at the other extremity of this essential part of the arrangement, namely, where oxygen goes to the electrolyte. The first may be considered as a case where the current is put into motion by the abstraction of oxygen from hydrogen, the latter by that of hydrogen from oxygen. The direction of the electric current is in both cases the same, when referred to the direction in which the elementary particles of the electrolyte are moving (923. 962.), and both are equally in accordance with the hypothetical view of the inductive action of the particles just described (1740.).
1743. In such a view of voltaic excitement, the action of the particles may be divided into two parts, that which occurs whilst the force in a particle of oxygen is rising towards a particle of zinc acting on it, and falling towards the particle of hydrogen with which it is associated (this being the progressive period of the inductive action), and that which occurs when the change of association takes place, and the particle of oxygen leaves the hydrogen and combines with the zinc. The former appears to be that which produces the current, or if there be no current, produces the state of tension at the termination of the battery; whilst the latter, by terminating for the time the influence of the particles which have been active, allows of others coming into play, and so the effect of current is continued.
1744. It seems highly probable, that excitement by friction may very frequently be of the same character. Wollaston endeavoured to refer such excitement to chemical action*; but if by chemical action ultimate union of the acting particles is intended, then there are plenty of cases which are opposed to such a view. Davy mentions some such, and for my own part I feel no difficulty in admitting other means of electrical excitement than chemical action, especially if by chemical action is meant a final combination of the particles.
1745. Davy refers experimentally to the opposite states which two particles having opposite chemical relations can assume when they are brought into the close vicinity of each other, but not allowed to combine†. This, I think, is the first part of the action already described (1743.); but in my opinion it cannot give rise to a con-
* Philosophical Transactions, 1801, p. 427. † Ibid. 1807. p. 34.
tinuous current unless combination take place, so as to allow other particles to act successively in the same manner, and not even then unless one set of the particles be present as an element of an electrolyte (923. 963.) ; i.e. mere quiescent contact alone without chemical action does not in such cases produce a current.
1746. Still it seems very possible that such a relation may produce a high charge, and thus give rise to excitement by friction. When two bodies are rubbed together to produce electricity in the usual way, one at least must be an insulator. During the act of rubbing, the particles of opposite kinds must be brought more or less closely together, the few which are most favourably circumstanced being in such close contact as to be short only of that which is consequent upon chemical combination. At such moments they may acquire by their mutual induction (1740.) and partial discharge to each other very exalted opposite states, and when, the moment after, they are by the progress of the rub removed from each other's vicinity, they will retain this state if both bodies be insulators, and exhibit them upon their complete separation.
1747. All the circumstances attending friction seem to me to favour such a view. The irregularities of form and pressure will cause that the particles of the two rubbing surfaces will be at very variable distances, only a few at once being in that very close relation which is probably necessary for the development of the forces; further, those which are nearest at one time will be further removed at another, and others will become the nearest, and so by continuing the friction many will in succession be excited. Finally, the lateral direction of the separation in rubbing seems to me the best fitted to bring many pairs of particles, first of all into that close vicinity necessary for their assuming the opposite states by relation to each other, and then to remove them from each other's influence whilst they retain that state.
1748. It would be easy, on the same view, to explain hypothetically, how, if one of the rubbing bodies be a conductor, as the amalgam of an electrical machine, the state or the other when it comes from under the friction is (as a mass) exalted; but it would be folly to go far into such speculation before that already advanced has been backed or corrected by fit experimental evidence. I do not wish it to be supposed that I think all excitement by friction is of this kind; on the contrary, certain experiments lead me to believe that in many cases, and perhaps in all, effects of a thermoelectric nature conduce to the ultimate end; and there are very probably other causes of electric disturbance influential at the same time, which we have not as yet distinguished.
Royal Institution,
June, 1838.