Experimental Researches in Electricity.--Twelfth Series

Author(s) Michael Faraday
Year 1838
Volume 128
Pages 42 pages
Language en
Journal Philosophical Transactions of the Royal Society of London

Full Text (OCR)

VII. Experimental Researches in Electricity.—Twelfth Series. By Michael Faraday, Esq., D.C.L. F.R.S. Fullerian Prof. Chem. Royal Institution, Corr. Memb. Royal and Imp. Acad. of Sciences, Paris, Petersburgh, Florence, Copenhagen, Berlin, &c. &c. Received January 11,—Read February 8, 1838. §. 18. On Induction (continued). ¶ vii. Conduction, or conductive discharge. ¶ viii. Electrolytic discharge. ¶ ix. Disruptive discharge—Insulation—Spark—Brush—Difference of discharge at the positive and negative surfaces of conductors. 1318. I PROCEED now, according to my promise, to examine, by the great facts of electrical science, that theory of induction which I have ventured to put forth (1165. 1295. &c.). The principle of induction is so universal that it pervades all electrical phenomena; but the general case which I purpose at present to go into consists of insulation traced into and terminating with discharge, with the accompanying effects. This case includes the various modes of discharge, and also the condition and characters of a current; the elements of magnetic action being amongst the latter. I shall necessarily have occasion to speak theoretically, and even hypothetically; and though these papers profess to be experimental researches, I hope that, considering the facts and investigations contained in the last series in support of the particular view advanced, I shall not be considered as taking too much liberty on the present occasion, or as departing too far from the character which they ought to have, especially as I shall use every opportunity which presents itself of returning to that strong test of truth, experiment. 1319. Induction has as yet been considered in these papers only in cases of insulation;—opposed to insulation is discharge. The action or effect which may be expressed by the general term discharge, may take place, as far as we are aware at present, in several modes. Thus, that which is called simply conduction involves no chemical action, and apparently no displacement of the particles concerned. A second mode may be called electrolytic discharge; in it chemical action does occur, and particles must, to a certain degree, be displaced. A third mode, namely, that by sparks or brushes, may, because of its violent displacement of the particles of the dielectric in its course, be called the disruptive discharge; and a fourth may, perhaps, be conveniently distinguished for a time by the words convection, or carrying discharge, being that in which discharge is effected either by the carrying power of solid par- ticles, or those of gases and liquids. Hereafter, perhaps, all these modes may appear as the result of one common principle, but at present they require to be considered apart; and I will now speak of the first mode, for amongst all the forms of discharge that which we express by the term conduction appears the most simple and the most directly in contrast with insulation. ¶ vii. Conduction, or conductive discharge. 1320. Though assumed to be essentially different, yet neither Cavendish nor Poisson attempt to explain by, or even state in, their theories, what the essential difference between insulation and conduction is. Nor have I anything, perhaps, to offer in this respect, except that, according to my view of induction, both it and conduction depend upon the same molecular action of the dielectrics concerned; are only extreme degrees of one common condition or effect; and in any sufficient mathematical theory of electricity must be taken as cases of the same kind. Hence the importance of the endeavour to show the connection between them under my theory of the electrical relations of contiguous particles. 1321. Though the action of the insulating dielectric in the charged Leyden jar, and that of the wire in discharging it, may seem very different, they may be associated by numerous intermediate links, which carry us on from one to the other, leaving, I think, no necessary connection unsupplied. We may observe some of these in succession for information respecting the whole case. 1322. Spermaceti has been examined and found to be a dielectric, through which induction can take place (1240. 1246.), its specific inductive capacity being about or above 1·8 (1279.), and the inductive action has been considered in it, as in all other substances, an action of contiguous particles. 1323. But spermaceti is also a conductor, though in so low a degree that we can trace the process of conduction, as it were, step by step through the mass (1247.); and even when the electric force has travelled through it to a certain distance, we can, by removing the coercitive (which is at the same time the inductive) force, cause it to return upon its path and reappear in its first place (1245. 1246.). Here induction appears to be a necessary preliminary to conduction. It of itself brings the contiguous particles of the dielectric into a certain condition, which, if retained by them, constitutes insulation, but if lowered by the communication of power from one particle to another, constitutes conduction. 1324. If glass or shell-lac be the substances under consideration, the same capabilities of suffering either induction or conduction through them appear (1233. 1239. 1247.), but not in the same degree. The conduction almost disappears (1239. 1242.); the induction therefore is sustained, i.e. the polarized state into which the inductive force has brought the contiguous particles is retained, there being little discharge action between them, and therefore the insulation continues. But, what discharge there is, appears to be consequent upon that condition of the particles into which the induction throws them; and thus it is that ordinary insulation and conduction are closely associated together, or rather are extreme cases of one common condition. 1325. In ice or water we have a better conductor than spermaceti, and the phenomena of induction and insulation therefore quickly disappear, because conduction quickly follows upon the assumption of the inductive state. But let a plate of cold ice have metallic coatings on its sides, and connect one of these with a good electrical machine in work, and the other with the ground, and it then becomes easy to observe the phenomena of induction through the ice, by the electrical tension which can be obtained and continued on both the coatings (419. 426.). For although that portion of power which at one moment gave the inductive condition to the particles is at the next lowered by the consequent discharge due to the conductive act, it is succeeded by another portion of force from the machine to restore the inductive state. If the ice be converted into water, the same succession of actions can be just as easily proved, provided the water be distilled, and (if the machine be not powerful enough) a voltaic battery be employed. 1326. All these considerations impress my mind strongly with the conviction, that insulation and ordinary conduction cannot be properly separated when we are examining into their nature; that is, into the general law or laws under which their phenomena are produced. They appear to me to consist in an action of contiguous particles dependent on the forces developed in electrical excitement; these forces bring the particles into a state of tension or polarity, which constitutes both induction and insulation; and being in this state, the continuous particles have a power or capability of communicating their forces one to the other, by which they are lowered, and discharge occurs. Every body appears to discharge (444); but the possession of this capability in a greater or smaller degree in different bodies, makes them better or worse conductors, worse or better insulators; and both induction and conduction appear to be the same in their principle and action (1320.), except that in the latter an effect common to both is raised to the highest degree, whereas in the former it occurs in the best cases, in only an almost insensible quantity. 1327. That in our attempts to penetrate into the nature of electrical action, and to deduce laws more general than those we are at present acquainted with, we should endeavour to bring apparently opposite effects to stand side by side in harmonious arrangement, is an opinion of long standing, and sanctioned by the ablest philosophers. I hope, therefore, I may be excused the attempt to look at the highest cases of conduction as analogous to, or even the same in kind with, those of induction and insulation. 1328. If we consider the slight penetration of sulphur (1241. 1242.) or shell-lac (1234.) by electricity, or the feebler insulation sustained by spermaceti (1279. 1240.), as essential consequences and indications of their conducting power, then may we look on the resistance of metallic wires to the passage of electricity through them as insulating power. Of the numerous well known cases fitted to show this resistance in what are called the perfect conductors, the experiments of Professor Wheatstone best serve my present purpose, since they were carried to such an extent as to show that time entered as an element into the conditions of conduction* even in metals. When discharge was made through a copper wire 2640 feet in length, and \( \frac{1}{8} \)th of an inch in diameter, so that the luminous sparks at each end of the wire, and at the middle, could be observed in the same place, the latter was found to be sensibly behind the two former in time, they being by the conditions of the experiment, simultaneous. Hence a proof of retardation; and what reason can be given why this retardation should not be of the same kind as that in spermaceti, or in lac, or sulphur? But as, in them, retardation is insulation, and insulation is induction, why should we refuse the same relation to the same exhibitions of force in the metals? 1329. We learn from the experiment, that if time be allowed the retardation is gradually overcome; and the same thing obtains for the spermaceti, the lac, and glass; give but time in proportion to the retardation, and the latter is at last vanquished. But if that be the case, and all the results are alike in kind, the only difference being in the length of time, why should we refuse to metals the previous inductive action, which is admitted to occur in the other bodies? The diminution of time is no negation of the action; nor is the lower degree of tension requisite to cause the forces to traverse the metal, as compared to that necessary in the cases of water, spermaceti, or lac. These differences would only point to the conclusion, that in metals the particles under induction can transfer their forces when at a lower degree of tension or polarity, and with greater facility than in the instances of the other bodies. 1330. Let us look at Mr. Wheatstone's beautiful experiment in another point of view. If, leaving the arrangement at the middle and two ends of the long copper wire unaltered, we remove the two intervening portions and replace them by wires of iron or platina, we shall have a much greater retardation of the middle spark than before. If, removing the iron, we were to substitute for it only five or six feet of water in a cylinder of the same diameter as the metal, we should have still greater retardation. If from water we passed to spermaceti, either directly or by gradual steps through other bodies, (even though we might vastly enlarge the bulk, for the purpose of evading the occurrence of a spark elsewhere (1331.) than at the three proper intervals,) we should have still greater retardation, until at last we might arrive, by degrees so small as to be inseparable from each other, at actual and permanent insulation. What, then, is to separate the principle of these two extremes, perfect conduction and perfect insulation, from each other; since the moment we leave in the smallest degree perfection at either extremity, we involve the element of perfection at the opposite end? Especially too, as we have not in nature the case of perfection either at one extremity or the other, either of insulation or conduction. * Philosophical Transactions, 1834, p. 583. 1331. Again, to return to this beautiful experiment in the various forms which may be given to it: the forces are not all in the wire (after they have left the Leyden jar) during the whole time (1328.) occupied by the discharge; they are disposed in part through the surrounding dielectric under the well-known form of induction; and if that dielectric be air, induction takes place from the wire through the air to surrounding conductors, until the ends of the wire are electrically related through its length and discharge has occurred, i.e. for the time during which the middle spark is retarded beyond the others. This is well shown by the old experiment, in which a long wire is so bent that two parts (Plate III. fig. 1. a, b,) near its extremities shall approach within a short distance, as a quarter of an inch, of each other in the air. If the discharge of a Leyden jar, charged to a sufficient degree, be sent through such a wire, by far the largest portion of the electricity will pass as a spark across the air at the interval, and not by the metal. Does not the middle part of the wire, therefore, act here as an insulating medium, though it be of metal? and is not the spark through the air an indication of the tension (simultaneous with induction) of the electricity in the ends of this single wire? Why should not the wire and the air both be regarded as dielectrics; and the action at its commencement, and whilst there is tension, as an inductive action? If it acts through the contorted lines of the wire, so it also does in curved lines through air (1219. 1224.), and other insulating dielectrics (1228.) ; and we can apparently go so far in the analogy, whilst limiting the case to the inductive action only, as to show that amongst insulating dielectrics some lead away the lines of force from others (1229.), as the wire will do from worse conductors, though in it the principal effect is no doubt due to the ready discharge between the particles whilst in a low state of tension. The retardation is for the time insulation; and it seems to me we may just as fairly compare the air at the interval a, b, (fig. 1.) and the wire in the circuit, as two bodies of the same kind and acting upon the same principles, as far as the first inductive phenomena are concerned, notwithstanding the different forms of discharge which ultimately follow*, as we may compare, according to Coulomb's investigations†, different lengths of different insulating bodies required to produce the same amount of insulating effect. 1332. This comparison is still more striking when we take into consideration the experiment of Mr. Harris, in which he stretched a fine wire across a glass globe, the air within being rarefied‡. On sending a charge through the joint arrangement of metal and rare air, as much, if not more, electricity passed by the latter as by the former. In the air, rarefied as it was, there can be no doubt the discharge was preceded by induction (1284.) ; and to my mind all the circumstances indicate that the same was the case with the metal; that, in fact, both substances are dielectrics, ex- * These will be examined hereafter (1348, &c.). † Mémoires de l'Académie, 1785, p. 612. or Ency. Britann. First Supp. vol. i. p. 611. ‡ Philosophical Transactions, 1834, p. 242. hibiting the same effects in consequence of the action of the same causes, the only variation being one of degree in the different substances employed. 1333. Judging on these principles, velocity of discharge through the *same wire* may be varied greatly by attending to the circumstances which cause variations of discharge through spermaceti or sulphur. Thus, for instance, it must vary with the tension or intensity of the first urging force (1234. 1240.), which tension is charge and induction. So if the two ends of the wire, in Professor Wheatstone's experiment, were immediately connected with two large insulated metallic surfaces exposed to the air, so that the primary act of induction, after making the contact for discharge, might be in part removed from the internal portion of the wire at the first instant, and disposed for the moment on its surface jointly with the air and surrounding conductors, then I venture to anticipate that the middle spark would be more retarded than before; and if these two plates were the inner and outer coating of a large jar or a Leyden battery, then the retardation of that spark would be still greater. 1334. Cavendish was perhaps the first to show distinctly that discharge was not always by one channel*, but, if several are present, by many at once. We may make these different channels of different bodies, and by proportioning their thicknesses and lengths, may include such substances as air, lac, spermaceti, water, protoxide of iron, iron and silver, and by *one* discharge make each convey its proportion of the electric force. Perhaps the air ought to be excepted, as its discharge by conduction is questionable at present; but the others may all be limited in their mode of discharge to pure conduction. Yet several of them suffer previous induction, precisely like the induction through the air, it being a necessary preliminary to their discharging action. How can we therefore separate any one of these bodies from the others, as to the *principles and mode* of insulating and conducting, except by mere degree? All seem to me to be dielectrics acting alike, and under the same common laws. 1335. I might draw another argument in favour of the general sameness, in nature and action, of good and bad conductors (and all the bodies I refer to are conductors more or less), from the perfect equipoise in action of very different bodies when opposed to each other in magneto-electric inductive action, as formerly described (213.), but am anxious to be as brief as is consistent with the clear examination of the probable truth of my views. 1336. With regard to the possession by the gases of any conducting power of the simple kind now under consideration, the question is a very difficult one to determine at present. Experiments seem to indicate that they do insulate certain low degrees of tension perfectly, and that the effects which may have appeared to be occasioned by *conduction* have been the result of the carrying power of the charged particles, * Philosophical Transactions, 1776, p. 197. either of the air or of dust, in it. It is equally certain, however, that with higher degrees of tension or charge they discharge to one another, and that is conduction. If they possess the power of insulating a certain low degree of tension continuously and perfectly, such a result may be due to their peculiar physical state, and the condition of separation under which their particles are placed. But in that, or in any case, we must not forget the fine experiments of Cagniard de la Tour*, in which he has shown that liquids and their vapours can be made to pass gradually into each other, to the entire removal of any marked distinction of the two states. Thus, hot dry steam and cold water pass by insensible gradations into each other; yet the one is amongst the gases as an insulator, and the other a comparatively good conductor. As to conducting power, therefore, the transition from metals even up to gases is gradual; substances make but one series in this respect, and the various cases must come under one condition and law (444.). The specific differences of bodies as to conducting power only serves to strengthen the general argument, that conduction, like insulation, is a result of induction, and is an action of contiguous particles. 1337. I might go on now to consider induction and its concomitant, conduction, through mixed dielectrics, as, for instance, when a charged body, instead of acting across air to a distant uninsulated conductor, acts jointly through it and an interposed insulated conductor. In such a case, the air and the conducting body are the mixed dielectrics; and the latter assumes a polarized condition as a mass, like that which my theory assumes each particle of the air to possess at the same time. But I fear to be tedious in the present condition of the subject, and hasten to the consideration of other matter. 1338. To sum up, in some degree, what has been said, I look upon the first effect of an excited body upon neighbouring matters to be the production of a polarized state of their particles, which constitutes induction; and this arises from its action upon the particles in immediate contact with it, which again act upon those contiguous to them, and thus the forces are transferred to a distance. If the induction remain undiminished, then perfect insulation is the consequence; and the higher the polarized condition which the particles can acquire or maintain, the higher is the intensity which may be given to the acting forces. If, on the contrary, the contiguous particles, upon acquiring the polarized state, have the power to communicate their forces, then conduction occurs, and the tension is lowered, conduction being a distinct act of discharge between neighbouring particles. The lower the state of tension at which this discharge between the particles of a body takes place, the better conductor is that body. In this view, insulators may be said to be bodies whose particles can retain the polarized state; whilst conductors are those whose particles cannot be permanently polarized. If I be right in my view of induction, then I consider the reduction of these two effects (which have been so long held distinct) to an action of * Annales de Chimie, xxi. pp. 127. 178. or Quarterly Journal of Science, xv. 145. contiguous particles obedient to one common law, as a very important result; and, on the other hand, the identity of character which the two acquire when viewed by the theory (1326.), is additional presumptive proof in favour of the correctness of the latter. 1339. That heat has great influence over simple conduction is well known (445.), its effect being, in some cases, almost an entire change of the characters of the body (432. 1340.). Harris has, however, shown that it in no respect affects gaseous bodies, or at least air*; and Davy has taught us that, as a class, metals have their conducting power diminished by it†. 1340. I formerly described a substance, sulphuret of silver, whose conducting power was increased by heat (433. 437. 438.) ; and I have since then met with another as strongly affected in the same way: this is fluoride of lead. When a piece of that substance, which had been fused and cooled, was introduced into the circuit of a voltaic battery, it stopped the current. Being heated, it acquired conducting powers before it was visibly red hot in daylight; and even sparks could be taken against it whilst still solid. The current alone then raised its temperature (as in the case of sulphuret of silver) until it fused, after which it seemed to conduct as well as the metallic vessel containing it; for whether the wire used to complete the circuit touched the fused fluoride only, or was in contact with the platina on which it was supported, no sensible difference in the current was observed. During all the time there was scarcely a trace of decomposing action on the fluoride, and what did occur, seemed referable to the air and moisture of the atmosphere, and not to electrolytic action. 1341. I have now very little doubt that periodide of mercury (414. 448. 691.) is a case of the same kind, and also corrosive sublimate (692.). I am also inclined to think, since making the above experiments, that the anomalous action of the prot-oxide of antimony, formerly observed and described (693. 801.), may be referred in part to the same cause. 1342. I have no intention at present of going into the particular relation of heat and electricity, but we may hope hereafter to discover by experiment the law which probably holds together all the above effects with those of the evolution and the disappearance of heat by the current, and the striking and beautiful results of thermoelectricity, in one common bond. ¶ viii. Electrolytic discharge. 1343. I have already expressed in a former paper (1164.) the view by which I hope to associate ordinary induction and electrolyzation. Under that view, the discharge of electric forces by electrolyzation is rather an effect superadded, in a certain class * Philosophical Transactions, 1834, p. 230. † Ibid. 1821, p. 431. of bodies, to those already described as constituting induction and insulation, than one independent of and distinct from these phenomena. 1344. Electrolytes, as respects their insulating and conducting forces, belong to the general category of bodies (1320.1334.), and if they are in the solid state (as nearly all can assume that state), they retain their place, presenting then no new phenomenon (426, &c.) ; or if one occur being in so small a proportion as to be almost unimportant. When liquefied, they also belong to the same list whilst the electric intensity is below a certain degree; but at a given intensity (910. 912. 1007.), fixed for each, and very low in all known cases, they play a new part, causing discharge in proportion (783.) to the development of certain chemical effects of combination and decomposition; and at this point, move out from the general class of insulators and conductors, to form a distinct one by themselves. The former phenomena have been considered (1320.1338.); it is the latter which have now to be revised, and used as a test of the proposed theory of induction. 1345. The theory assumes, that the particles of the dielectric (now an electrolyte) are in the first instance brought, by ordinary inductive action, into a polarized state, and raised to a certain degree of tension or intensity before discharge commences; the inductive state being, in fact, a necessary preliminary to discharge. By taking advantage of those circumstances which bear upon the point, it is not difficult to increase the tension indicative of this state of induction, and so make the state itself more evident. Thus, if distilled water be employed, and a long narrow portion of it placed between the electrodes of a powerful voltaic battery, we have at once indications of the intensity which can be sustained at these electrodes by the inductive action through the water as a dielectric, for sparks may be obtained, gold leaves diverged, and Leyden bottles charged at their wires. The water is in the condition of the spermaceti (1322.1323.), a bad conductor and a bad insulator; but what it does insulate is by virtue of inductive action, and that induction is the preparation for and precursor of discharge (1338.). 1346. The induction and tension which appear at the limits of the portion of water in the direction of the current, are only the sums of the induction and tension of the contiguous particles between those limits; and the limitation of the inductive tension, to a certain degree shows (time entering in each case as an important element of the result), that when the particles have acquired a certain relative state, discharge, or a transfer of forces equivalent to ordinary conduction, takes place. 1347. In the inductive condition assumed by water before discharge comes on, the particles polarized are the particles of the water, that being the dielectric used; but the discharge between particle and particle is not, as before, a mere interchange of their powers or forces at the polar parts, but an actual separation of them into their two elementary particles, the oxygen travelling in one direction, and carrying with it its amount of the force it had acquired during the polarization, and the hydrogen doing the same thing in the other direction, until they each meet the next approaching particle, which is in the same electrical state with that they have left, and by association of their forces with it, produce what constitutes discharge. This part of the action may be regarded as a carrying one (1319.), performed by the constituent particles of the dielectric. The latter is always a compound body (664. 823.) ; and by those who have considered the subject and are acquainted with the philosophical view of transfer which was first put forth by Grotthuss*, its particles may easily be compared to a series of metallic conductors under inductive action, which, whilst in that state, are divisible into these elementary moveable halves. 1348. Electrolytic discharge depends, of necessity, upon the non-conduction of the dielectric as a whole, and there are two steps or acts in the process: first a polarization of the molecules of the substance, and then a lowering of the forces by the separation, advance in opposite directions, and recombination of the elements of the molecules, they being, as it were, the halves of the originally polarized conductors or particles. 1349. These views of the decomposition of electrolytes and the consequent effect of discharge, which, as to the particular case, are the same with those of Grotthuss (481.) and Davy (482.), though they differ from those of Biot (487.), De la Rive (490.), and others, seem to me to be fully in accordance not merely with the theory I have given of induction generally (1165.), but with all the known facts of common induction, conduction, and electrolytic discharge; and in that respect help to confirm, in my mind, the truth of the theory set forth. The new mode of discharge which electrolyzation presents must surely be an evidence of the action of contiguous particles; and as this appears to depend directly upon a previous inductive state, which is the same with common induction, it greatly strengthens the argument which refers induction in all cases to an action of contiguous particles also (1295, &c.). 1350. As an illustration of the condition of the polarized particles in a dielectric under induction, I may describe an experiment. Put into a glass vessel some clear rectified oil of turpentine, and introduce two wires passing through glass tubes where they are at the surface of the fluid, and terminating either in balls or points. Cut some very clean dry white silk into small particles, and put these also into the liquid; then electrify one of the wires by an ordinary machine and discharge by the other. The silk will immediately gather from all parts of the liquid, and form a band of particles reaching from wire to wire, and if touched by a glass rod will show considerable tenacity; yet the moment the supply of electricity ceases, the band will fall away and disappear by the dispersion of its parts. The conduction by the silk is in this case very small; and after the best examination I could give to the effects, the impression on my mind is, that the adhesion of the whole is due to the polarity which each filament acquires, exactly as the particles of iron between the poles of a horse-shoe magnet are held together in one mass by a similar disposition of forces. The particles of silk therefore represent to me the condition of the molecules of the dielectric itself, which I assume to be polar, just as that of the silk is. In all cases of conductive dis- * Annales de Chimie, lviii. 60. and lxiii. 20. charge the contiguous polarized particles of the body are able to effect a neutralization of their forces with greater or less facility, as the silk does also in a very slight degree. Further we are not able to carry the parallel, except in imagination; but if we could divide each particle of silk into two halves, and let each half travel until it met and united with the next half in an opposite state, it would then exert its carrying power (1347.), and so far represent electrolytic discharge. 1351. Admitting that electrolytic discharge is a consequence of previous induction, then how evidently do its numerous cases point to induction in curved lines (1216.), and to the divergence or lateral action of the lines of inductive force (1231.), and so strengthen that part of the general argument in the former paper! If two balls of platina, forming the electrodes of a voltaic battery, are put into a large vessel of dilute sulphuric acid, the whole of the surfaces are covered with the respective gases in beautifully regulated proportions, and the mind has no difficulty in conceiving the direction of the curved lines of discharge, and even the intensity of force of the different lines, by the quantity of gas evolved upon the different parts of the surface. Hence the general effects of diffusion; the appearance of the anions or cathions round the edges and on the further side of the electrodes when in the form of plates; the manner in which the current or discharge will follow all the forms of the electrolyte, however contorted. Hence the effects which Nobili has so well examined and described* in his papers on the distribution of currents in conducting masses. All these effects indicate the direction of the currents or discharges which occur in and through the dielectrics, and these are in every case preceded by equivalent inductive actions of the contiguous particles. 1352. Hence also the advantage, when the exciting forces are weak or require assistance, of enlarging the mass of the electrolyte; of increasing the size of the electrodes; of making the coppers surround the zins:—all is in harmony with the view of induction which I am endeavouring to examine; I do not perceive as yet one fact against it. 1353. There are many points of electrolytic discharge which ultimately will require to be very closely considered, though I can but slightly touch upon them. It is not that, as far as I have investigated them, they present any contradiction to the view taken (for I have carefully, though unsuccessfully, sought for such cases), but simply want of time as yet to pursue the inquiry, which prevents me from entering upon them here. 1354. One point is, that different electrolytes or dielectrics require different initial intensities for their decomposition (912.). This may depend upon the degree of polarization which the particles require before electrolytic discharge commences. It is in direct relation to the chemical affinity of the substances concerned; and will probably be found to have a relation or analogy to the specific inductive capacity of different bodies (1252. 1296.). It thus promises to assist in causing the great truths * Bibliotheque Universelle, 1835, lix. 263. 416. of those extensive sciences, which are occupied in considering the forces of the particles of matter, to fall into much closer order and arrangement than they have heretofore presented. 1355. Another point is, the facilitation of electrolytic conducting power or discharge by the addition of substances to the dielectric employed. This effect is strikingly shown where water is the body whose qualities are improved, but, as yet, no general law governing all the phenomena has been detected. Thus some acids, as the sulphuric, phosphoric, oxalic, and nitric, increase the power of water enormously; whilst others, as the tartaric and citric acids, give but little power; and others, again, as the acetic and boracic acids, do not produce a change sensible to the voltameter (739.). Ammonia produces no effect, but its carbonate does. The caustic alkali and their carbonates produce a fair effect. Sulphate of soda, nitre (753.), and many soluble salts produce much effect. Percyanide of mercury and corrosive sublimate produce no effect; nor does iodine, gum, or sugar, the test being a voltameter. In many cases the added substance is acted on either directly or indirectly, and then the phenomena are more complicated; such substances are muriatic acid (758.), the soluble protochlorides, (766.), and iodides (769.), nitric acid (752.), &c. In other cases the substance added is not, when alone, subject to or a conductor of the powers of the voltaic battery, and yet both gives and receives power when associated with water. M. de la Rive has pointed this result out in sulphurous acid*, iodine and bromine†; the chloride of arsenic produces the same effect. A far more striking case, however, is presented by that very influential body sulphuric acid (681.) and probably phosphoric acid also is in the same peculiar relation. 1356. It would seem in the cases of those bodies which suffer no change themselves, as sulphuric acid (and perhaps in all), that they affect water in its conducting power only as an electrolyte; for whether little or much improved, the decomposition is proportionate to the quantity of electricity passing (727. 730.), and the transfer is therefore due to electrolytic discharge. This is in accordance with the fact already stated as regards water (984.), that the conducting power is not improved for electricity of force below the electrolytic intensity of the substance acting as the dielectric; but both facts (and some others) are against the opinion which I formerly gave, that the power of salts, &c. might depend upon their assumption of the liquid state by solution in the water employed (410.). It occurs to me that the effect may perhaps be related to, and have its explanation in differences of specific inductive capacities. 1357. I have described in the last paper, cases, where shell-lac was rendered a conductor by absorption of ammonia (1294.). The same effect happens with muriatic acid; yet both these substances, when gaseous, are non-conductors; and the * Quarterly Journal, xxvii. 407. or Bibliotheque Universelle, xl. 205. Kemp says sulphurous acid is a very good conductor, Quarterly Journal, 1831, p. 613. † Quarterly Journal, xxiv. 465. or Annales de Chimie, xxxv. 161. ammonia, also when in strong solution (748.). Mr. Harris has mentioned instances* in which the conducting power of metals is seriously altered by a very little alloy. These may have no relation to the former cases, but nevertheless should not be overlooked in the general investigation which the whole question requires. 1358. Nothing is perhaps more striking in that class of dielectrics which we call electrolytes, than the extraordinary and almost complete suspension of their peculiar mode of effecting discharge when they are rendered solid (380, &c.), even though the intensity of the induction acting through them may be increased a hundred fold or more (419.). It not only establishes a very general relation between the physical properties of these bodies and electricity acting by induction through them, but draws both their physical and chemical relations so near together, as to make us hope we shall shortly arrive at the full comprehension of the influence they mutually possess over each other. ¶ ix. Disruptive discharge and insulation. 1359. The next form of discharge has been distinguished by the adjective disruptive (1319.), as it in every case displaces more or less the particles amongst and across which it suddenly breaks. I include under it, discharge in the form of sparks, brushes, and glow (1405.), but exclude the cases of currents of air, fluids, &c., which, though frequently accompanying the former, are essentially distinct in their nature. 1360. The conditions requisite for the production of an electric spark in its simplest form are well known. An insulating dielectric must be interposed between two conducting surfaces in opposite states of electricity, and then if the actions be continually increased in strength, or otherwise favoured, either by exalting the electric state of the two conductors, or bringing them nearer to each other, or diminishing the density of the dielectric, a spark at last appears, and the two forces are for the time annihilated, for discharge has occurred. 1361. The conductors (which may be considered as the termini of the inductive action) are in ordinary cases most generally metals, whilst the dielectrics usually employed are common air and glass. In my view of induction, however, every dielectric becomes of importance, for as the results are considered essentially dependent on these bodies, it was to be expected that differences of action never before suspected would be evident upon close examination, and so at once give fresh confirmation of the theory, and open new doors of discovery into the extensive and varied fields of our science. This hope was especially entertained with respect to the gases, because of their high degree of insulation, their uniformity in physical condition, and great difference in chemical properties. 1362. All the effects prior to the discharge are inductive; and the degree of tension which it is necessary to attain before the spark passes is therefore, in the examination I am now making of the new view of induction, a very important point. It is the * Philosophical Transactions, 1827, p. 22. limit of the influence which the dielectric exerts in resisting discharge; it is a measure, consequently, of the conservative power of the dielectric, which in its turn may be considered as becoming a measure, and therefore a representative of the intensity of the electric forces in activity. 1363. Many philosophers have examined the circumstances of this limiting action in air, but, as far as I know, none have come near Mr. Harris as to the accuracy with, and the extent to, which he has carried on his investigations*. Some of his results I must very briefly notice, premising that they are all obtained with the use of air as the dielectric between the conducting surfaces. 1364. First as to the distance between the two balls used, or in other words, the thickness of the dielectric across which the induction was sustained. The quantity of electricity, measured by a unit jar or otherwise on the same principle with the unit jar, in the charged or inductive ball, necessary to produce spark discharge, was found to vary exactly with the distance between the balls, or between the discharging points, and that under very varied and exact forms of experiment†. 1365. Then with respect to variation in the pressure or density of the air. The quantities of electricity required to produce discharge across a constant interval varied exactly with variations of the density; the quantity of electricity and density of the air being in the same simple ratio. Or, if the quantity was retained the same, whilst the interval and density of the air were varied, then these were found in the inverse simple ratio of each other, the same quantity passing across twice the distance with air rarefied to one half‡. 1366. It must be remembered that these effects take place without any variation of the inductive force by condensation or rarefaction of the air. That force remains the same in air§, and in all gases (1284. 1292.), whatever their rarefaction may be. 1367. Variation of the temperature of the air produced no variation of the quantity of electricity required to cause discharge across a given interval||. Such are the general results, which I have occasion for at present, obtained by Mr. Harris, and they appear to me to be unexceptionable. 1368. In the theory of induction founded upon a molecular action of the dielectric, we have to look to the state of that body principally for the cause and determination of the above effects. Whilst the induction continues, it is assumed that the particles of the dielectric are in a certain polarized state, the tension of this state rising higher in each particle as the induction is raised to a higher degree, either by approximation of the inducing surfaces, variations of form, increase of the original force, or other means; until at last, the tension of the particles having reached the utmost degree which they can sustain without subversion of the whole arrangement, discharge immediately after takes place. 1369. The theory does not assume, however, that all the particles of the dielectric * Philosophical Transactions, 1834, p. 225. † Ibid. § Ibid. pp. 237. 244. ‡ Ibid. p. 229. || Ibid. p. 230. subject to the inductive action are affected to the same amount, or acquire the same tension. What has been called the lateral action of the lines of inductive force (1231. 1297.), and the diverging and occasionally curved form of these lines, is against such a notion. The idea is, that any section taken through the dielectric across the lines of inductive force, and including all of them, would be equal, in the sum of the forces, to the sum of the forces in any other section; and that, therefore, the whole amount of tension for each such section would be the same. 1370. Discharge probably occurs, not when all the particles have attained to a certain degree of tension, but when that particle which is most affected has been exalted to the subverting or turning point (1410.). For though all the particles in the line of induction resist charge, and are associated in their actions so as to give a sum of resisting force, yet when any one is brought up to the overturning point, all must give way in the case of a spark between ball and ball. The breaking down of that one must of necessity cause the whole barrier to be overturned, for it was at its utmost degree of resistance when it possessed the aiding power of that one particle, in addition to the power of the rest, and the power of that one is now lost. Hence tension or intensity* may, according to the theory, be considered as represented by the particular condition of the particles, or the amount in them of forced variation from their normal state (1298. 1368.). 1371. The whole effect produced by a charged conductor on a distant conductor, insulated or not, is by my theory assumed to be due to an action propagated from particle to particle of the intervening and insulating dielectric, the particles being considered as thrown for the time into a forced condition, from which they endeavour to return to their normal or natural state. The theory, therefore, seems to supply an easy explanation of the influence of distance in affecting induction (1303. 1364.). As the distance is diminished induction increases; for there are then fewer particles in the line of inductive force to oppose their resistance to the assumption of the forced or polarized state, and vice versa. Again, as the distance diminishes, discharge across happens with a lower charge of electricity; for if, as in Harris's experiments (1364.), the interval be diminished to one half, then half the electricity required to discharge across the first interval is sufficient to strike across the second; and it is evident, also, that at that time there are only half the number of interposed molecules uniting their forces to resist the discharge. 1372. The effect of enlarging the conducting surfaces which are opposed to each other in the act of induction, is, if the electricity be limited in its supply, to lower the intensity of action; and this follows as a very natural consequence from the increased area of the dielectric across which the induction is effected. For by diffusing the inductive action, which at first was exerted through one square inch of sectional area of the dielectric, over two or three square inches of such area, twice or three times the number of molecules of the dielectric are brought into the polarized con- * See Harris on proposed particular meaning of these terms, Philosophical Transactions, 1834, p. 222. dition, and employed in sustaining the inductive action, and consequently the tension belonging to the smaller number on which the limited force was originally accumulated, must fall in a proportionate degree. 1373. For the same reason diminishing these opposing surfaces must increase the intensity up to the condition even of their becoming points. But in this case, the tension of the particles of the dielectric next the points is higher than that of particles midway, because of the lateral action and consequent bulging, as it were, of the lines of inductive force at the middle distance (1369.). 1374. The more exalted effects of induction on a point \( p \), or any small surface, as the rounded end of a rod, opposed to a large surface, as that of a ball or plate, than when it is opposed to another point or end at the same distance, falls into harmonious relation (1302.). For in the latter case, the small surface \( p \) is affected only by those particles which are brought into the inductive condition by the equally small surface of the opposed conductor, whereas when that is a ball or plate the lines of inductive force from the latter are concentrated, as it were, upon the end \( p \). Now though the molecules of the dielectric against the large surface may have a much lower state of tension than those against the similar smaller surface, yet they are also far more numerous, and, as the lines of inductive force converge towards a point, are able to communicate to the particles contained in any cross section (1369.) nearer the small surface an amount of tension equal to their own, and consequently much higher for each individual particle; so that, at the surface of the smaller conductor, the tension of a particle rises much, and if that conductor were to terminate in a point, the tension would rise to an infinite degree, except that it is limited, as before (1368.), by discharge. The nature of the discharge from small surfaces and points under induction will be resumed hereafter (1425. &c.). 1375. Rarefaction of the air does not alter the intensity of inductive action (1284. 1287.); nor is there any reason, as far as I can perceive, why it should. If the quantity of electricity and the distance remain the same, and the air be rarefied one half, then, though one half of the particles of the dielectric are removed, the other half assume a double degree of tension in their polarity, and therefore the inductive forces are balanced, and the result remains unaltered as long as the induction and insulation are sustained. But the case of discharge is very different; for as there are only half the number of dielectric particles in the rarefied atmosphere, so these are brought up to the discharging intensity by half the former quantity of electricity; discharge, therefore, ensues, and such a consequence of the theory is in perfect accordance with Mr. Harris's results (1365.). 1376. The increase of electricity required to cause discharge over the same distance, when the pressure of the air or its density is increased, flows in a similar manner, and on the same principle, from the molecular theory. 1377. Here I think my view of induction has a decided advantage over others, especially over that which refers the retention of electricity on the surface of conductors in air to the pressure of the atmosphere. The latter is the view which, being adopted by Poisson and Bior*, is also, I believe, that generally received; and it relates two such dissimilar things, as the ponderous air and the subtil and even hypothetical fluid or fluids of electricity, by gross mechanical relations; by the bonds of mere static pressure. My theory, on the contrary, sets out at once by connecting the electric forces with the particles of matter; it derives all its proofs, and even its origin in the first instance, from experiment; and then, without any further assumption, seems to offer at once a full explanation of these and many other singular, peculiar, and, I think, heretofore unrelated effects. 1378. An important assisting experimental argument may here be adduced, derived from the difference of specific inductive capacity of different dielectrics (1269. 1274. 1278.). Consider an insulated sphere electrified positively and placed in the centre of another and larger sphere uninsulated, a uniform dielectric, as air, intervening. The case is really that of my apparatus (1187.), and also, in effect, that of any ball electrified in a room and removed to some distance from irregularly formed conductors. Whilst things remain in this state the electricity is distributed (so to speak) uniformly over the surface of the electrified sphere. But introduce such a dielectric as sulphur or lac, into the space between the two conductors on one side only, or opposite one part of the inner sphere, and immediately the electricity on the latter is diffused unequally (1229. 1270. 1309.), although the form of the conducting surfaces, their distances, and the pressure of the atmosphere remain perfectly unchanged. 1379. Fusinieri took a different view from that of Poisson, Bior, and others, of the reason why rarefaction of air caused easy diffusion of electricity. He considered the effect as due to the removal of the obstacle which the air presented to the expansion of the substances from which the electricity passed†. But platina balls show the phenomena in vacuo as well as volatile metals and other substances; besides which, when the rarefaction is very considerable, the electricity passes with scarcely any resistance, and the production of no sensible heat; so that I think Fusinieri's view of the matter is likely to gain but few assents. 1380. I have no need to remark upon the discharging or collecting power of flame or hot air. I believe, with Harris, that the mere heat does nothing (1367.), the rarefaction only being influential. The effect of rarefaction has been already considered generally (1375.); and that caused by the heat of a burning light, with the pointed form of the wick, and the carrying power of the carbonaceous particles which for the time are associated with it, are fully sufficient to account for all the effects. 1381. We have now arrived at the important question, how will the inductive tension requisite for insulation and disruptive discharge be sustained in gases, which, * Ency. Britann. Supplement, vol. iv. Article Electricity, pp. 76. 81. &c. † Bib. Univ. 1831. xlviii. 375. having the same physical state and also the *same pressure* and the *same temperature* as air, differ from it in specific gravity, in chemical qualities, and it may be in peculiar relations, which not being as yet recognised, are purely electrical (1361.)? 1382. Into this question I can enter now only as far as is essential for the present argument, namely, that insulation and inductive tension do not depend merely upon the charged conductors employed, but also, and essentially, upon the interposed dielectric, in consequence of the molecular action of its particles. 1383. A glass vessel \(a\) (fig. 13.)* was ground at the top and bottom so as to be closed by two ground brass plates, \(b\) and \(c\); \(b\) carried a stuffing box, with a sliding rod \(d\) terminated by a brass ball \(s\) below, and a ring above. The lower plate was connected with a foot, stop-cock, and socket, \(e\), \(f\) and \(g\); and also with a brass ball \(l\), which by means of a stem attached to it and entering the socket \(g\), could be fixed at various heights. The metallic parts of this apparatus were not varnished, but the glass was well covered with a coat of shell-lac previously dissolved in alcohol. On exhausting the vessel at the air-pump it could be filled with any other gas than air, and, in such cases, the gas so passed in was dried whilst entering by fuzed chloride of calcium. 1384. The other part of the apparatus consisted of two insulating pillars, \(h\) and \(i\), to which were fixed two brass balls, and through these passed two sliding rods, \(k\) and \(m\), terminated at each end by brass balls; \(n\) is the end of an insulated conductor, which could be rendered either positive or negative from an electrical machine; \(o\) and \(p\) are wires connecting it with the two parts previously described, and \(q\) is a wire which, connecting the two opposite sides of the collateral arrangements, also communicates with a good discharging train \(r\) (292.). 1385. It is evident that the discharge from the machine electricity may pass either between \(s\) and \(l\), or \(S\) and \(L\). The regulation adopted in the first experiments was to keep \(s\) and \(l\) with their distance unchanged, but to introduce first one gas and then another into the vessel \(a\), and then balance the discharge at the one place against that at the other; for by making the interval at \(u\) sufficiently small, all the discharge would pass there, or making it sufficiently large it would all occur at the interval \(v\) in the receiver. On principle it seemed evident, that in this way the varying interval \(u\) might be taken as a measure, or rather indication of the resistance to discharge through the gas at the constant interval \(v\). The following are the constant dimensions. | Ball \(s\) | 0·93 of an inch. | |------------|-----------------| | Ball \(S\) | 0·96 of an inch. | | Ball \(l\) | 2·02 of an inch. | | Ball \(L\) | 1·95 of an inch. | | Interval \(v\) | 0·62 of an inch. | 1386. On proceeding to experiment it was found that when air or any gas was in * The drawing is to a scale of \(\frac{1}{6}\). the receiver \(a\), the interval \(u\) was not a fixed one; it might be altered through a certain range of distance, and yet sparks pass either there or at \(v\) in the receiver. The extremes were therefore noted, i.e. the greatest distance short of that at which the discharge always took place at \(v\) in the gas, and the least distance short of that at which it always took place at \(u\) in the air. Thus, with air in the receiver, the extremes at \(u\) were 0·56 and 0·79 of an inch, the range of 0·23 being one at which sparks passed occasionally either at one interval or the other. 1387. The small balls \(s\) and \(S\) could be rendered either positive or negative from the machine, and as gases were expected and were found to differ from each other in relation to this change, the results obtained under these differences of charge were also noted. 1388. The following is a Table of results; the gas named is that in the vessel \(a\). The smallest, greatest, and mean interval at \(u\) in air is expressed in parts of an inch, the interval \(v\) being constantly 0·62 of an inch. | Gas | Smallest | Greatest | Mean | |----------------------------|----------|----------|-------| | Air, \(s\) and \(S\), pos. | 0·60 | 0·79 | 0·695 | | Air, \(s\) and \(S\), neg. | 0·59 | 0·68 | 0·635 | | Oxygen, \(s\) and \(S\), pos.| 0·41 | 0·60 | 0·505 | | Oxygen, \(s\) and \(S\), neg.| 0·50 | 0·52 | 0·510 | | Nitrogen, \(s\) and \(S\), pos.| 0·55 | 0·68 | 0·615 | | Nitrogen, \(s\) and \(S\), neg.| 0·59 | 0·70 | 0·645 | | Hydrogen, \(s\) and \(S\), pos.| 0·30 | 0·44 | 0·370 | | Hydrogen, \(s\) and \(S\), neg.| 0·25 | 0·30 | 0·275 | | Carbonic acid, \(s\) and \(S\), pos.| 0·56 | 0·72 | 0·640 | | Carbonic acid, \(s\) and \(S\), neg.| 0·58 | 0·60 | 0·590 | | Olefiant gas, \(s\) and \(S\), pos.| 0·64 | 0·86 | 0·750 | | Olefiant gas, \(s\) and \(S\), neg.| 0·69 | 0·77 | 0·730 | | Coal gas, \(s\) and \(S\), pos.| 0·37 | 0·61 | 0·490 | | Coal gas, \(s\) and \(S\), neg.| 0·47 | 0·58 | 0·525 | | Muriatic acid gas, \(s\) and \(S\), pos.| 0·89 | 1·32 | 1·105 | | Muriatic acid gas, \(s\) and \(S\), neg.| 0·67 | 0·75 | 0·720 | 1389. The above results were all obtained at one time. On other occasions other experiments were made, which gave generally the same results as to order, though not as to numbers. Thus: - Hydrogen, \(s\) and \(S\), pos. . . . 0·23 0·57 0·400 - Carbonic acid, \(s\) and \(S\), pos. . . . 0·51 1·05 0·780 - Olefiant gas, \(s\) and \(S\), pos. . . . 0·66 1·27 0·965 I did not notice the difference of the barometer on the days of experiment. 1390. One would have expected only two distances, one for each interval, for which the discharge might happen either at one or the other; and that the least alteration of either would immediately cause one to predominate constantly over the other. But that under common circumstances is not the case. With air in the receiver, the variation amounted to 0·2 of an inch nearly on the smaller interval of 0·6, and with muriatic acid gas, the variation was above 0·4 on the smaller interval of 0·9. Why is it that when a fixed interval (the one in the receiver) will pass a spark that cannot go across 0·6 of air at one time, it will immediately after, and apparently under exactly similar circumstances, not pass a spark that can go across 0·8 of air? 1391. It is probable that part of this variation will be traced to particles of dust in the air drawn into and about the circuit. I believe also that part depends upon a variable charged condition of the surface of the glass vessel \(a\). That the whole of the effect is not traceable to the influence of circumstances in the vessel \(a\), may be deduced from the fact, that when sparks occur between balls in free air they frequently are not straight, and often pass otherwise than by the shortest distance. These variations in air itself, and at different parts of the very same balls, show the presence and influence of circumstances which are calculated to produce effects of the kind now under consideration. 1392. When a spark had passed at either interval, then, generally, more tended to appear at the same interval, as if a preparation had been made for the passing of the latter sparks. So also on continuing to work the machine quickly the sparks generally followed at the same place. This effect is probably due in part to the warmth of the air heated by the preceding spark, in part to dust, and I suspect in part to something unperceived as yet in the circumstances of discharge. 1393. A very remarkable difference, which is constant in its direction, occurs when the electricity communicated to the balls \(s\) and \(S\) is changed from positive to negative, or in the contrary direction. It is that the range of variation is always greater when the small balls are positive than when they are negative. This is exhibited in the following Table, drawn from the former experiments. | | Pos. | Neg. | |----------------|------|------| | In Air the range was | 0·19 | 0·09 | | Oxygen | 0·19 | 0·02 | | Nitrogen | 0·13 | 0·11 | | Hydrogen | 0·14 | 0·05 | | Carbonic acid | 0·16 | 0·02 | | Olefiant gas | 0·22 | 0·08 | | Coal gas | 0·24 | 0·12 | | Muriatic acid | 0·43 | 0·08 | I have no doubt these numbers require considerable correction, but the general result is striking, and the differences in several cases very great. 1394. Though, in consequence of the variation of the striking distance (1386.), the interval in air fails to be a measure, as yet, of the insulating or resisting power of the gas in the vessel, yet we may for present purposes take the mean interval as representing in some degree that power. On examining these mean intervals as they are given in the third column (1388.), it will be very evident, that gases, when employed as dielectrics, have peculiar electrical relations to insulation, and therefore to induction, very distinct from such as might be supposed to depend upon their mere physical qualities of specific gravity or pressure. 1395. First, it is clear that at the same pressure they are not alike, the difference being as great as 37 and 110. When the small balls are charged positively, and with the same surfaces and the same pressure, muriatic acid gas has three times the insulating or restraining power (1362.) of hydrogen gas, and nearly twice that of oxygen, nitrogen, or air. 1396. Yet it is evident that the difference is not due to specific gravity, for though hydrogen is the lowest, and therefore lower than oxygen, oxygen is much beneath nitrogen, or than olefiant gas; and carbonic acid gas, though considerably heavier than olefiant gas or muriatic gas, is lower than either. Oxygen as a heavy, and olefiant as a light gas, are in strong contrast with each other; and if we may reason of olefiant gas from Harris's results with air (1365.), then it might be rarefied to two-thirds its usual density, or to a specific gravity of 9·3 (hydrogen being 1), and having neither the same density nor pressure as oxygen, would have equal insulating powers with it, or equal tendency to resist discharge. 1397. Experiments have already been described (1291. 1292.) which show that the gases are sensibly alike in their inductive capacity. This result is not in contradiction with the existence of great differences in their restraining power. The same point has been observed already in regard to dense and rare air (1375.). 1398. Hence arises a new argument proving that it cannot be mere pressure of the atmosphere which prevents or governs discharge (1377. 1378.), but a specific electric quality or relation of the gaseous medium. Hence also additional argument for the theory of molecular inductive action. 1399. Other specific differences amongst the gases may be drawn from the preceding series of experiments, rough and hasty as they are. Thus the positive and negative series of mean intervals do not give the same differences. It has been already noticed that the negative numbers are lower than the positive (1393.), but, besides that, the order of the positive and negative results is not the same. Thus on comparing the mean numbers (which represent for the present insulating tension,) it appears that in air, hydrogen, carbonic acid, olefiant gas and muriatic acid, the tension rose higher when the smaller ball was made positive than when rendered negative, whilst in oxygen, nitrogen, and coal gas the reverse was the case. Now though the numbers cannot be trusted as exact, and though air, oxygen, and nitrogen should probably be on the same side, yet some of the results, as, for instance, those with muriatic acid, fully show a peculiar relation and difference amongst gases in this respect. This was further proved by making the interval in air 0·8 of an inch whilst muriatic acid gas was in the vessel \(a\); for on charging the small balls \(s\) and \(S\) positively, all the discharge took place through the air; but on charging them negatively, all the discharge took place through the muriatic acid gas. 1400. So also, when the conductor \(n\) was connected only with the muriatic acid gas apparatus, it was found that the discharge was more facile when the small ball \(s\) was negative than when positive; for in the latter case, much of the electricity passed off as brush discharge through the air from the connecting wire \(p\); but in the former case, it all seemed to go through the muriatic acid. 1401. The consideration, however, of positive and negative discharge across air and other gases will be resumed in the further part of this, or in the next paper. 1402. Here for the present I must leave this part of the subject, which had for its object only to observe how far gases agreed or differed as to their power of retaining a charge on bodies acting by induction through them. All the results conspire to show that Induction is an action of contiguous molecules (1295. &c.); but besides confirming this, the first principle placed for proof in the present inquiry, they greatly assist in developing the specific properties of each gaseous dielectric, at the same time showing that further and extensive experimental investigation is necessary, and holding out the promise of new discovery as the reward of the labour required. 1403. When we pass from the consideration of dielectrics like the gases to that of bodies having the liquid and solid condition, then our reasonings in the present state of the subject assume much more of the character of mere supposition. Still I do not perceive anything adverse to the theory in the phenomena which such bodies present. If we take three insulating dielectrics, as air, oil of turpentine and shell-lac, and use the same balls or conductors at the same intervals in these three substances, increasing the intensity of the induction until discharge take place, we shall find that it must be raised much higher in the fluid than for the gas, and higher still in the solid than for the fluid. Nor is this inconsistent with the theory; for with the liquid, though its molecules are free to move almost as easily as those of the gas, there are many more particles introduced into the given interval; and as respects the latter circumstance, the same is the case when the solid body is employed. Besides that, the cohesive force of the body used will produce some effect; for though the production of the polarized states in the particle of a solid may not be obstructed, but, on the contrary, may in some cases be even favoured (1164. 1344.) by its solidity or other circumstances, yet solidity may well exert an influence on the point of its final subversion, (just as it prevents discharge in an electrolyte,) and so enable inductive intensity to rise to a much higher degree. 1404. In the cases of solids and liquids too, bodies may, and most probably do, possess specific differences as to their ability of assuming the polarized state, and also as to the extent to which that polarity must rise before discharge occurs. An analogous difference exists in the specific inductive capacities already pointed out in a few substances (1278.) in the last paper. Such a difference might even account for the various degrees of insulating and conducting power possessed by different bodies, and, if it should be found to exist, would add further strength to the argument in favour of the molecular theory of inductive action. 1405. Having considered these various cases of sustained insulation in non-conducting dielectrics up to the highest point which they can attain, we find that they terminate at last in disruptive discharge; the peculiar condition of the molecules of the dielectric which was necessary to the continuous induction, being equally essential to the occurrence of that effect which closes all the phenomena. This discharge is not only in its appearance and condition different to the former modes by which the lowering of the powers was effected (1320. 1343.), but, whilst really the same in principle, varies much from itself in certain characters, and thus presents us with the forms of spark, brush, and glow (1359.). I will first consider the spark, limiting it for the present to the case of discharge between two oppositely electrified conducting surfaces. The electric spark or flash. 1406. The spark is a discharge or lowering of the polarized inductive state of many dielectric particles, by a particular action of a few of the particles occupying a very small and limited space; all the previously polarized particles returning to their first or normal condition in the inverse order in which they left it, and uniting their powers meanwhile to produce, or rather to continue, (1417 and 1436.) the discharge effect in the place where the subversion of force first occurred. My impression is, that the few particles situated where discharge occurs are not merely pushed apart, but assume a peculiar state, a highly exalted condition for the time, i.e. have thrown upon them all the surrounding forces in succession, and rising up to a proportionate intensity of condition, perhaps equal to that of chemically combining atoms, discharge the powers, possibly in the same manner as they do theirs, by some operation at present unknown to us; and so the end of the whole. The ultimate effect is exactly as if a metallic wire had been put into the place of the discharging particles; and it does not seem impossible that the principles of action in both cases may, hereafter, prove to be the same. 1407. The path of the spark, or of the discharge, depends on the degree of tension acquired by the particles in the line of discharge, circumstances, which in every common case are very evident and by the theory easy to understand, rendering it higher in them than in their neighbours, and, by exalting them first to the requisite condition, causing them to determine the course of the discharge. Hence the se- lection of the path, and the solution of the wonder which Harris has so well described* as existing under the old theory. All is prepared amongst the molecules beforehand, by the prior induction, for the path either of the electric spark or of lightning itself. 1408. The same difficulty is expressed as a principle by Nobili for voltaic electricity, almost in Mr. Harris's words, namely†, "electricity directs itself towards the point where it can most easily discharge itself," and the results of this as a principle he has well wrought out for the case of voltaic currents. But the solution of the difficulty, or the proximate cause of the effects, is the same: induction brings the particles up to or towards a certain state (1370.) ; and by those which first attain it, is the discharge first and most efficiently performed. 1409. The moment of discharge is probably determined by that molecule of the dielectric which, from the circumstances, has its tension most quickly raised up to the maximum intensity. In all cases where the discharge passes from conductor to conductor this molecule must be on the surface of one of them; but when it passes between a conductor and a non-conductor, it is, perhaps, not always so (1453.). When this particle has acquired its maximum tension, then the whole barrier of resistance is broken down in the line or lines of inductive action originating at it, and disruptive discharge occurs (1370.) : and such an inference, drawn as it is from the theory, seems to me in accordance with Mr. Harris's facts and conclusions respecting the resistance of the atmosphere, namely, that it is not really greater at any one discharging distance than another‡. 1410. It seems probable, that the tension of a particle of the same dielectric, as air, which is requisite to produce discharge, is a constant quantity, whatever the shape of the part of the conductor with which it is in contact, whether ball or point; whatever the thickness or depth of dielectric throughout which induction is exerted; perhaps, even, whatever the state, as to rarefaction or condensation of the dielectric; and whatever the nature of the conductor, good or bad, with which the particle is for the moment associated. In saying so much, I do not mean to exclude small differences which may be caused by the reaction of neighbouring particles on the deciding particle, and indeed, it is evident that the intensity required in a particle must be related to the condition of those which are contiguous. But if the expectation should be found to approximate to truth, what a generality of character it presents! and, in the definiteness of the power possessed by a particular molecule, may we not hope to find an immediate relation to the force which, being electrical, is equally definite and constitutes chemical affinity? 1411. Theoretically it would seem that, at the moment of discharge by the spark in one line of inductive force, not merely would all the other lines throw their forces into this one (1406.), but the lateral effect, equivalent to a repulsion of these lines * Nautical Magazine, 1834, p. 229. † Bibliotheque Universelle, 1835, lix. 275. ‡ Philosophical Transactions, 1834, pp. 227, 229. would be relieved and, perhaps, followed by something equivalent to a contrary action, amounting to a collapse or attraction of these parts. Having long sought for some transverse force in statical electricity, which should be the equivalent to magnetism or the transverse force of current electricity, and conceiving that it might be connected with the transverse action of the lines of inductive force already described (1297.), I was desirous, by various experiments, of bringing out the effect of such a force, and making it bear upon the phenomena of electro-magnetism and magneto-electricity. 1412. Amongst other results, I expected and sought for the mutual affection, or even the lateral coalition of two similar sparks, if they could be obtained simultaneously side by side, and sufficiently near to each other. For this purpose, two similar Leyden jars were supplied with rods of copper projecting from their balls in a horizontal direction, the rods being about 0·2 of an inch thick, and rounded at the ends. The jars were placed upon a sheet of tinfoil, and so adjusted that their rods, \(a\) and \(b\), were near together, in the position represented in plan at fig. 2. \(c\) and \(d\) were two brass balls connected by a brass rod and insulated; \(e\) was also a brass ball connected, by a wire, with the ground and with the tinfoil upon which the Leyden jars were placed. By laying an insulated metal rod across from \(a\) to \(b\), charging the jars, and removing the rod, both the jars could be brought up to the same intensity of charge (1370.). Then, making the ball \(e\) approach the ball \(d\), at the moment the spark passed there, two sparks passed between the rods \(n, o\), and the ball \(c\); and as far as the eye could judge, or the conditions determine, they were simultaneous. 1413. Under these circumstances two modes of discharge took place; either each end had its own particular spark to the ball, or else one end only was associated by a spark with the ball, but was at the same time related to the other end by a spark between the two. 1414. When the ball \(c\) was about an inch in diameter, the ends \(n\) and \(o\), about half an inch from it, and about 0·4 of an inch from each other, the two sparks to the ball could be obtained. When, for the purpose of bringing the sparks nearer together, the ends, \(n\) and \(o\), were brought closer to each other, then, unless very carefully adjusted, only one end had a spark with the ball, the other having a spark to it; and the least variation of position would cause either \(n\) or \(o\) to be the end which, giving the direct spark to the ball, was also the one through, or by means of which, the other discharged its electricity. 1415. On making the ball \(c\) smaller, I found that then it was needful to make the interval between the ends \(n\) and \(o\) larger in proportion to the distance between them and the ball \(c\). On making \(c\) larger, I found I could diminish the interval, and so bring the two simultaneous separate sparks closer together, until, at last, the distance between them was not more at the widest part than 0·6 of their whole length. 1416. Numerous sparks were then passed and carefully observed. They were very rarely straight, but either curved or bent irregularly. In the average of cases they were, I think, decidedly convex towards each other; perhaps two thirds presented more or less of this effect, the rest bulging more or less outwards. I was never able, however, to obtain sparks which, separately leaving the ends of the wires $n$ and $o$, conjoined into one spark before they reached or communicated with the ball $c$. At present, therefore, though I think I saw a tendency in the sparks to unite, I cannot assert it as a fact. 1417. But there is one very interesting effect here analogous to, and it may be in part the same with, that I was searching for: I mean the increased facility of discharge where the spark passes. For instance, in the cases where one end, as $n$, discharged the electricity of both ends to the ball $c$, fig. 2., the electricity of the other end $o$, had to pass through an interval of air $1\cdot5$ times as great as that which it might have taken, by its direct passage between the end and the ball itself. In such cases, the eye could not distinguish, even by the use of Wheatstone's means*, that the spark from the end $n$, which contained both portions of electricity, was a double spark. It could not have consisted of two sparks taking separate courses, for such an effect would have been visible to the eye; but it is just possible, that the spark of the first end $n$ and its jar, passing at the smallest interval of time before that of the other $o$, had heated and expanded the air in its course, and made it so much more favourable to discharge, that the electricity of the end $o$ preferred leaping across to it and taking a very circuitous route, rather than the more direct one to the ball. It must, however, be remarked, in answer to this supposition, that the one spark between $d$ and $e$ would, by its influence, tend to produce simultaneous discharges at $n$ and $o$, and certainly did so, when no preponderance was given to one wire over the other, as to the previous inductive effect (1414.). 1418. The fact, however, is, that disruptive discharge is favourable to itself. It is at the outset a case of tottering equilibrium: and if time be an element in discharge, in however minute a proportion (1436.), then the commencement of the act at any point favours its continuance and increase there, and portions of power will be discharged by a course which they would not otherwise have taken. 1419. The mere heating and expansion of the air itself by the first portion of electricity which passes, must have a great influence in producing this result. 1420. As to the result itself, we see its influence in every spark that passes; for it is not the whole quantity which passes that determines the discharge, but merely that small portion of force which brings the deciding molecule (1370.) up to its maximum tension; then, when its forces are subverted and discharge begins, all the rest passes by the same course, from the influence of the favouring circumstances just referred to; and whether it be the electricity on a square inch, or a thousand * Philosophical Transactions, 1834, pp. 584, 585. square inches of charged glass, the discharge is complete. Hereafter we shall find the influence of this effect in the formation of brushes (1435.) ; and it is not impossible that we may trace it producing the jagged spark and the forked lightning. 1421. The characters of the electric spark in different gases vary, and the variation may be due simply to the effect of the heat evolved at the moment. But it may also be due to that specific relation of the particles and the electric forces which I have assumed as the basis of a theory of induction; the facts do not oppose such a view; and in that view, the variation strengthens the argument for molecular action, as it would seem to show the influence of the latter in every part of the electrical effect (1423. 1454.). 1422. The appearances of the sparks in different gases have often been observed and recorded*, but I think it not out of place to notice briefly the following results; they were obtained with balls of brass, (platina surfaces would have been better,) and at common pressures. In air, the sparks have that intense light and bluish colour which are so well known, and often have faint or dark parts in their course, when the quantity of electricity passing is not great. In nitrogen, they are very beautiful, having the same general appearance as in air, but have decidedly more colour of a bluish or purple character, and I thought were remarkably sonorous. In oxygen, the sparks were whiter than in air or nitrogen, and I think not so brilliant. In hydrogen, they had a very fine crimson colour, not due to its rarity, for the character passed away as the atmosphere was rarefied (1459.)†. Very little sound was produced in this gas; but that is a consequence of its physical condition‡. In carbonic acid gas, the colour was similar to that of the spark in air, but with a little green in it: the sparks were remarkably irregular in form, more so than in common air: they could also, under similar circumstances as to size of ball, &c., be obtained much longer than in air, the gas showing a singular readiness to pass the discharge in the form of spark. In muriatic acid gas, the spark was nearly white: it was always bright throughout, never presenting those dark parts which happen in air, nitrogen, and some other gases. The gas was dry, and during the whole experiment the surface of the glass globe within remained quite dry and bright. In coal gas, the spark was sometimes green, sometimes red, and occasionally one part was green and another red. Black parts also occur very suddenly in the line of the spark, i.e. they are not connected by any dull part with bright portions, but the two seem to join directly one with the other. 1423. These varieties of character impress my mind with a feeling, that they are due to a direct relation of the electric powers to the particles of the dielectric through which the discharge occurs, and are not the mere results of a casual ignition or a * See Van Marum's description of the Teylerian machine, vol. i. p. 112., and vol. ii. p. 196.; also Ency. Britan., vol. vi., Article Electricity, pp. 505, 507. † Van Marum says they are about four times as large in hydrogen as in air, vol. i. p. 122. ‡ Leslie. secondary kind of action of the electricity, upon the particles which it finds in its course and thrusts aside in its passage (1454.). 1424. The spark may be obtained in media which are far denser than air, as in oil of turpentine, olive oil, resin, glass, &c.: it may also be obtained in bodies which being denser likewise approximate to the condition of conductors, as spermaceti, water, &c. But in these cases, nothing occurs which, as far as I can perceive, is at all hostile to the general views I have endeavoured to advocate. The electrical brush. 1425. The brush is the next form of disruptive discharge which I will consider. There are many ways of obtaining it, or rather of exalting its characters; and all these ways illustrate the principles upon which it is produced. If an insulated conductor, connected with the positive conductor of an electrical machine, have a metal rod 0·3 of an inch in diameter projecting from it outwards from the machine, and terminating by a rounded end or a small ball, it will generally give good brushes; or, if the machine be not in good action, then many ways of assisting the formation of the brush can be resorted to; thus, the hand or any large conducting surface may be approached towards the termination to increase inductive force (1374.): or the termination may be smaller and of badly conducting matter, as wood: or sparks may be taken between the prime conductor of the machine and the secondary conductor to which the termination giving brushes belongs: or, which gives to the brushes exceedingly fine characters and great magnitude, the air around the termination may be rarefied more or less, either by heat or the air pump; the former favourable circumstances being also continued. 1426. The brush when obtained by a powerful machine on a ball about 0·7 of an inch in diameter, at the end of a long brass rod attached to the positive prime conductor, had the general appearance as to form represented in fig. 3.: a short conical bright part or root appeared at the middle part of the ball projecting directly from it, which, at a little distance from the ball, broke out suddenly into a wide brush of pale ramifications having a quivering motion, and being accompanied at the same time with a low dull chattering sound. 1427. At first the brush seems continuous, but Professor Wheatstone has shown that the whole phenomenon consists of successive intermitting discharges*. If the eye be passed rapidly, not by a motion of the head, but of the eyeball itself, across the direction of the brush, by first looking steadfastly about 10° or 15° above, and then instantly as much below it, the general brush will be resolved into a number of individual brushes, standing in a row upon the line which the eye passed over; each elementary brush being the result of a single discharge, and the space between them representing both the time during which the eye was passing over that space, and that which elapsed between one discharge and another. * Philosophical Transactions, 1834, p. 586. 1428. The single brushes could easily be separated to eight or ten times their own width, but were not at the same time extended, i.e., they did not become more indefinite in shape, but, on the contrary, less so, each being more distinct in form, ramification, and character, because of its separation from the others, in its effects upon the eye. Each, therefore, was instantaneous in its existence (1436.). Each had the conical root complete (1426.). 1429. On using a smaller ball, the general brush was smaller, and the sound, though weaker, more continuous. On resolving the brush into its elementary parts, as before, these were found to occur at much shorter intervals than in the former case, but still the discharge was intermitting. 1430. Employing a wire with a round end, the brush was still smaller, but, as before, separable into successive discharges. The sound, though feebler, was higher in pitch, being a distinct musical note. 1431. The sound is, in fact, due to the recurrence of the noise of each separate discharge, and these, happening at intervals nearly equal under ordinary circumstances, cause a definite note to be heard, which, rising in pitch with the increased rapidity and regularity of the intermitting discharges, gives a ready and accurate measure of the intervals, and so may be used in any case when the discharge is heard, even though the appearances may not be seen, to determine the element of time. So also, when, by bringing the hand towards a projecting rod or ball, the pitch of the tone produced by a brushy discharge increases, the effect informs us that we have increased the induction (1374.), and by that means increased the rapidity of the alternations of charge and discharge. 1432. By using wires with finer terminations, smaller brushes were obtained, until they could hardly be distinguished as brushes; but as long as sound was heard, the discharge could be ascertained by the eye to be intermitting; and when the sound ceased, the light became continuous as a glow (1359. 1405.). 1433. To those not accustomed to use the eye in the manner I have described, or, in cases where the recurrence is too quick for any unassisted eye, the beautiful revolving mirror of Professor Wheatstone* will be useful for such developments of condition as those mentioned above. Another excellent process is to produce the brush or other luminous phenomenon on the end of a rod held in the hand opposite to a charged positive or negative conductor, and then move the rod rapidly from side to side whilst the eye remains still. The successive discharges occur of course in different places, and the state of things before, at, and after a single coruscation or brush can be exceedingly well separated. 1434. The brush is in reality a discharge between a bad or a non-conductor and either a conductor or another non-conductor. Under common circumstances, the brush is a discharge between a conductor and air, and I conceive it to take place in something like the following manner. When the end of an electrified rod projects into * Philosophical Transactions, 1834, pp. 584, 585. the middle of a room, induction takes place between it and the walls of the room, across the dielectric, air; and the lines of inductive force accumulate upon the end in greater quantity than elsewhere, or the particles of air at the end of the rod are more highly polarized than those at any other part of the rod, for the reasons already given (1374.). The particles of air situated in sections across these lines of force are least polarized in sections towards the walls, and most polarized in those nearer to the end of the wires (1369.): thus, it may well happen, that a particle at the end of the wire is at a tension that will immediately terminate in discharge, whilst in those even only a few inches off, the tension is still beneath that point. But suppose the rod to be charged positively, a particle of air A, fig. 4. next it, being polarized, and having of course its negative force directed towards the rod and its positive force outwards; the instant that discharge takes place between the positive force of the particle of the rod opposite the air and the negative force of the particle of air towards the rod, the whole particle of air becomes positively electrified; and when, the next instant, the discharged part of the rod resumes its positive state, by conduction from the surface of metal behind, it not only acts on the particles beyond A, by throwing A into a polarized state again, but A itself, because of its charged state, exerts a distinct inductive act towards these further particles, and the tension is consequently so much exalted between A and B, that discharge takes place there also, as well as again between the metal and A. 1435. In addition to this effect, it has been shown, that, the act of discharge having once commenced, the whole operation, like a case of unstable equilibrium, is hastened to a conclusion (1370. 1418.), the rest of the act being facilitated in its occurrence, and other electricity than that which caused the first necessary tension hurrying to the spot. When, therefore, disruptive discharge has once commenced at the root of a brush, the electric force which has been accumulating in the conductor attached to the rod, finds a more ready discharge there than elsewhere, and will at once follow the course marked out as it were for it, thus leaving the conductor in a partially discharged state, and the air about the end of the wire in a charged condition; and the time necessary for restoring the full charge of the conductor, and the dispersion of the charged air in a greater or smaller degree, by the joint forces of repulsion from the conductor and attraction towards the walls of the room, to which its inductive action is directed, is just that time which forms the interval between brush and brush (1420. 1427. 1431.). 1436. The words of this description are long, but there is nothing in the act or the forces on which it depends to prevent its being instantaneous, as far as we can estimate and measure it. The consideration of time is, however, important in several points of view (1418.), and in reference to disruptive discharge, it seemed from theory far more probable that it might be detected in a brush than in a spark, for in a brush, the particles in the line through which the discharge passes are in very different states as to intensity, and the discharge is already complete in its act at the root of the brush, before the particles at the extremity of the ramifications have yet attained their maximum intensity. 1437. I consider brush discharge as, probably, a successive effect in this way. Discharge begins at the root (1426.), and, extending itself in succession to all parts of the single brush, continues to go on at the root and the previously formed parts until the whole brush is complete; then, by the fall in intensity and power at the conductor, it ceases at once in all parts, to be renewed, when that power has risen again to a sufficient degree. But in a spark, the particles in the line of discharge being, from the circumstances, nearly alike in their intensity of polarization, suffer discharge so nearly at the same moment as to make the time quite insensible to us. 1438. Mr. Wheatstone has already made experiments which fully illustrate this point. He found that the brush generally had a sensible duration, but that with his highest capabilities he could not detect any such effect in the spark*. I repeated his experiment on the brush, though with more imperfect means, to ascertain whether I could distinguish a longer duration in the stem or root of the brush than in the extremities, and the appearances were such as to make me think an effect of this kind was produced. 1439. That the discharge breaks into several ramifications, and by them passes through portions of air alike, or nearly alike, as to polarization and the degree of tension the particles there have acquired, is a very natural result of the previous state of things, and sooner to be expected than that the discharge should continue to go straight out into space in a single line amongst those particles which, being at a distance from the end of the rod, are in a lower state of tension than those which are near: and whilst we cannot but conclude, that those parts where the branches of a single brush appear, are more favourably circumstanced for discharge than the darker parts between the ramifications, we may also conclude, that in those parts where the light of concomitant discharge is equal, there the circumstances are nearly equal also. The single brushes are by no means of the same particular shape even when they are observed without displacement of the rod or surrounding objects (1427. 1433.), and the successive discharges may be considered as taking place into the mass of air around, through different roads at each brush, according as minute circumstances, as dust, &c. (1391. 1392.) may have favoured the course by one set of particles rather than another. 1440. Brush discharge does not essentially require any current of the medium in which the brush appears: the current almost always occurs, but is a consequence of the brush, and will be considered hereafter. On holding a blunt point positively charged towards uninsulated water, a star or glow appeared on the point, a current of air passed from it, and the surface of the water was depressed; but on bringing * Philosophical Transactions, 1836, pp. 586, 590. the point so near that sonorous brushes passed, then the current of air instantly ceased, and the surface of the water became level. 1441. The discharge by a brush is not to all the particles of air that are near the electrified conductor from which the brush issues; only those parts where the ramifications pass are electrified: the air in the central dark parts between them receives no charge, and, in fact, at the time of discharge, has its electric and inductive tension considerably lowered. For consider fig. 14. to represent a single positive brush;—the induction before the discharge is from the end of the rod outwards, in diverging lines towards the distant conductors, as the walls of the room, &c., and a particle at \(a\) has polarity of a certain degree of tension, and tends with a certain force to become charged; but at the moment of discharge, the air in the ramifications \(b\) and \(d\), acquiring also a positive state, opposes its influence to that of the positive conductor on \(a\), and the tension of the particle at \(a\) is therefore diminished rather than increased. The charged particles at \(b\) and \(d\) are now inductive bodies, but their lines of inductive action are still outwards towards the walls of the room; the direction of the polarity and the tendency of other particles to charge from these, being governed by, or in conformity with, these lines of force. 1442. The particles that are charged are probably very highly charged, but, the medium being a non-conductor, they cannot communicate that state to their neighbours. They travel, therefore, under the influence of the repulsive and attractive forces, from the charged conductor towards the nearest uninsulated conductor, or the nearest body in a different state to themselves, just as charged particles of dust would travel, and are then discharged; each particle acting, in its course, as a centre of inductive force upon any bodies near which it may come. 1443. The travelling of these charged particles when they are numerous, causes wind and currents, but these will come into consideration under carrying discharge (1319.). When air is said to be electrified, and it frequently assumes this state near electrical machines, it consists, according to my view, of a mixture of electrified and unelectrified particles, the latter being in very large proportion to the former. When we gather electricity from air by a flame or by wires, it is either by the actual discharge of these particles, or by effects dependent on their inductive action, a case of either kind being produceable at pleasure. That the law of equality between the two forces or forms of force in inductive action is as strictly preserved in these as in other cases, is fully shown by the fact, formerly stated (1173. 1174.), that, however strongly air in a vessel might be charged positively, there was an exactly equal amount of negative force on the inner surface of the vessel itself, for no residual portion of either the one or the other electricity could be obtained. 1444. I have nowhere said, nor does it follow, that the air is charged only where the luminous brush appears. The charging may extend beyond those parts which are visible, i.e. particles to the right or left of the lines of light may receive electri- city, the parts which are luminous being so only because much electricity is passing by them to other parts (1437.) just as in a spark discharge the light is greater as more electricity passes, though it has no necessary relation to the quantity required to commence discharge (1370. 1420.). Hence the form we see in a brush may by no means represent the whole quantity of air electrified; for an invisible portion, clothing the visible form to a certain depth, may, at the same time, receive its charge. 1445. Several effects which I have met with in muriatic acid gas tend to make me believe, that that gaseous body allows of a dark discharge. At the same time, it is quite clear from theory, that in some gases, the reverse of this may occur, i.e. that the charging of the air may not extend even so far as the light. We do not know as yet enough of the electric light to be able to state on what it depends, and it is very possible that, when electricity bursts forth into air, all the particles of which are in a state of tension, light may be evolved by such as, being very near to, are not of, those which actually receive a charge at the time. 1446. The further a brush extends in a gas, the further no doubt is the charge or discharge carried forward; but this may vary between different gases, and yet the intensity required for the first moment of discharge not vary in the same, but in some other proportion. Thus with respect to nitrogen and muriatic acid gases, the former, as far as my experiments have proceeded, produces far finer and larger brushes than the latter (1458. 1462.), but the intensity required to commence discharge is much higher for the latter than the former (1395.). Here again, therefore, as in many other qualities, specific differences are presented by different gaseous dielectrics, and so prove the special relation of the latter to the act and the phenomena of induction. 1447. To sum up these considerations respecting the character and condition of the brush, I may state that it is a spark to air; a diffusion of electric force to matter, not by conduction, but disruptive discharge; a dilute spark which, passing to very badly conducting matter, frequently discharges but a small portion of the power stored up in the conductor; for as the air charged reacts on the conductor, whilst the conductor, by loss of electricity, sinks in its force, the discharge quickly ceases, until by the dispersion of the charged air and the renewal of the excited conditions of the conductor, circumstances have risen up to their first effective condition, again to cause discharge, and again to fall and rise. 1448. The brush and spark gradually pass into one another. Making a small ball positive by a good electrical machine with a large prime conductor, and approaching a large uninsulated discharging ball towards it, very beautiful variations from the spark to the brush may be obtained. The drawings of long and powerful sparks, given by Van Marum*, Harris†, and others, also indicate the same phenomena. As far as I have observed, whenever the spark has been brushy in air of common press- * Description of the Teylerian machine, vol. i. pp. 28. 32.; vol. ii. p. 226, &c. † Philosophical Transactions, 1834, p. 243. ures, the whole of the electricity has not been discharged, but only portions of it, more or less according to circumstances; whereas, whenever the effect has been a distinct spark throughout the whole of its course, the discharge has been perfect, provided no interruption had been made to it elsewhere, in the discharging circuit, than where the spark occurred. 1449. When an electrical brush from an inch to six inches in length or more is issuing into free air, it has the form given, fig. 3. But if the hand, a ball, or any knobbed conductor be brought near, the extremities of the coruscations turn towards it and each other, and the whole assumes various forms according to circumstances, as in figs. 5, 6, and 7. The influence of the circumstances in each case is easily traced, and I might describe it here, but that I should be ashamed to occupy the time of the Society in things so evident. But how beautifully does the curvature of the ramifications illustrate the curved form of the lines of inductive force existing previous to the discharge! for the former are consequences of the latter, and take their course, in each discharge, where the previous inductive tension had been raised to the proper degree. They represent these curves just as well as iron filings represent magnetic curves, the visible effects in both cases being the consequences of the action of the forces in the places where the effects appear. The phenomena, therefore, constitute additional and powerful testimony (1216. 1230.) to that already given in favour both of induction through dielectrics in curved lines (1231.), and of the lateral relation of these lines, by an effect equivalent to a repulsion producing divergence, or, as in the cases figured, the bulging form. 1450. In reference to the theory of molecular inductive action, I may also add here, the proof deducible from the long brushy ramifying spark which may be obtained between a small ball on the positive conductor of an electrical machine, and a larger one at a distance (1448.). What a fine illustration that spark affords of the previous condition of all the particles of the dielectric between the surfaces of discharge, and how unlike the appearances are to any which would be deduced from the theory which assumes inductive action to be action at a distance, in straight lines only; and charge, as being electricity retained upon the surface of conductors by the mere pressure of the atmosphere! 1451. When the brush is obtained in rarefied air, the appearances vary greatly, according to circumstances, and are exceedingly beautiful. Sometimes a brush may be formed of only six or seven branches, these being broad and highly luminous, of a purple colour, and in some parts an inch or more apart:—by a spark discharge at the prime conductor (1455.) single brushes may be obtained at pleasure. Discharge in the form of a brush is favoured by rarefaction of the air, in the same manner and for the same reason as discharge in the form of a spark (1375.); but in every case there is previous induction and charge through the dielectric, and polarity of its particles (1437.), the induction being, as in any other instance, alternately raised by the machine and lowered by the discharge. In certain experiments the rarefaction was increased to the utmost degree, and the opposed conducting surfaces brought as near together as possible without producing the glow: the brushes then contracted in their lateral dimensions, and recurred so rapidly as to form an apparently continuous arc of light from metal to metal. Still the discharge could be observed to intermit (1427.), so that even under these high conditions, induction preceded each single brush, and the tense polarized condition of the contiguous particles was a necessary preparation for the discharge itself. 1452. The brush form of disruptive discharge may be obtained not only in air and gases, but also in much denser media. I procured it in oil of turpentine from the end of a wire going through a glass tube into the fluid contained in a metal vessel. The brush was small and very difficult to obtain; the ramifications were simple, and stretched out from each other diverging very much. The light was exceedingly feeble, a perfectly dark room being required for its observation. When a few solid particles, as of dust or silk, were in the liquid, the brush was produced with much greater facility. 1453. The running together or coalescence of different lines of discharge (1412.) is very beautifully shown in the brush in air. This point may present a little difficulty to those who are not accustomed to see in every discharge an equal exertion of power in opposite directions, a positive brush being considered by such (perhaps in consequence of the common phrase *direction of a current*) as indicating a breaking forth in different directions of the original force, rather than a tendency to convergence and union in one line of passage. But the ordinary case of the brush may be compared, for its illustration, with that in which, by holding the knuckle opposite to highly excited glass, a discharge occurs, the ramifications of a brush then leading from the glass and converging into a spark on the knuckle. Though a difficult experiment to make, it is possible to obtain discharge between highly excited shell-lac and the excited glass of a machine: when the discharge passes, it is, from the nature of the charged bodies, brush at each end and spark in the middle, beautifully illustrating that tendency of discharge to facilitate like action, which I have described in a former page (1418.). 1454. The brush has *specific characters* in different gases, indicating a relation to the particles of these bodies even in a stronger degree than the spark (1422. 1423.). This effect is in strong contrast with the non-variation caused by the use of different substances as *conductors* from which the brushes are to originate. Thus, using such bodies as wood, card, charcoal, nitre, citric acid, oxalic acid, oxide of lead, chloride of lead, carbonate of potassa, potassa fusa, strong solution of potash, oil of vitriol, sulphur, sulphuret of antimony, and hæmatite, no variation in the character of the brushes was obtained, except that (dependent upon their effect as better or worse conductors) of causing discharge with more or less readiness and quickness from the machine*. 1455. The following are a few of the effects I observed in different gases at the positively charged surfaces, and with atmospheres varying in their pressure. The general effect of rarefaction was the same for all the gases: at first, sparks passed; these gradually were converted into brushes, which became larger and more distinct in their ramifications, until, upon further rarefaction, the latter began to collapse and draw in upon each other, till they formed a stream across from conductor to conductor: then a few lateral streams shot out towards the glass of the vessel from the conductors; these became thick, flossy, and soft in appearance, and were succeeded by the full constant glow which covered the discharging wire. The phenomena varied with the size of the vessel (1477.), the degree of rarefaction, and the discharge of electricity from the machine. When the latter was in successive sparks, they were most beautiful, the effect of a spark from a small machine being equal to, and often surpassing, that produced by the constant discharge of a far more powerful one. 1456. Air.—Fine positive brushes are easily obtained in air at common pressures, and possess the well-known purplish light. When the air is rarefied, the ramifications are very long, filling the globe (1477.), the light is greatly increased, and is of a beautiful purple colour, with an occasional rose tint in it. 1457. Oxygen.—At common pressures, the brush is very close and compressed, and of a dull whitish colour. In rarefied oxygen, the form and appearance are better, the colour somewhat purplish, but all the characters very poor compared to those in air. 1458. Nitrogen gives brushes with great facility at the positive surface, far beyond any other gas I have tried: they are almost always fine in form, light, and colour, and in rarefied nitrogen are magnificent. They surpass the discharges in any other gas as to the quantity of light evolved. 1459. Hydrogen, at common pressures, gave a better brush than oxygen, but did not equal nitrogen; the colour was greenish grey. In rarefied hydrogen, the ramifications were very fine in form and distinctness, but pale in colour, with a soft and velvety appearance, and not at all equal to those in nitrogen. In the rarest state of the gas, the colour of the light was a pale gray green. 1460. Coal gas.—The brushes were rather difficult to produce, the contrast with nitrogen being great in this respect. They were short and strong, generally of a greenish colour, and possessing much of the spark character: for, occurring on both the positive and negative terminations, often when there was a dark interval of some length between the two brushes, still the quick, sharp sound of the spark was * Exception must, of course, be made of those cases where the root of the brush, becoming a spark, causes a little diffusion or even decomposition of the matter there, and so gains more or less of a particular colour at that part. produced, as if the discharge had been sudden through this gas, and partaking, in that respect, of the character of a spark. In rare coal gas, the forms were better, but the light very poor and the colour gray. 1461. Carbonic acid gas produces a very poor brush at common pressures, as regards either size, light, or colour; and this is probably connected with the tendency which this gas has to discharge the electricity as a spark (1422.). In rarefied carbonic acid, the brush is better in form, but weak as to light, being of a dull greenish or purplish hue, varying with the pressure and other circumstances. 1462. Muriatic acid gas.—It is very difficult to obtain the brush in this gas at common pressures. On gradually increasing the distance of the rounded ends, the sparks suddenly ceased when the interval was about an inch, and the discharge, which was still through the gas in the globe, was silent and dark. Occasionally a very short brush could for a few moments be obtained, but it quickly disappeared again. Even when the intermitting spark current (1455.) from the machine was used, still I could only with difficulty obtain a brush, and that very short, though I used rods with rounded terminations (about 0·25 of inch in diameter) which had before given them most freely in air and nitrogen. During the time of this difficulty with the muriatic gas, magnificent brushes were passing off from different parts of the machine into the surrounding air. On rarefying the gas, the formation of the brush was facilitated, but it was generally of a low squat form, very poor in light, and very similar on both the positive and negative surfaces. On rarefying the gas still more, a few large ramifications were obtained of a pale bluish colour, utterly unlike those in nitrogen. 1463. In all the gases, the different forms of disruptive discharge may be linked together and gradually traced from one extreme to the other, i.e. from the spark to the glow (1405.), or, it may be, to a still further condition to be called dark discharge; but it is, nevertheless, very surprising to see what a specific character each keeps whilst under the predominance of the general law. Thus, in muriatic acid, the brush is very difficult to obtain, and there comes in its place almost a dark discharge, partaking of the readiness of the spark action. Moreover, in muriatic acid, I have never observed the spark with any dark interval in it. In nitrogen, the spark readily changes its character into that of brush. In carbonic acid gas, there seems to be a facility to occasion spark discharge, whilst yet that gas is unlike nitrogen in the facility of the latter to form brushes, and unlike muriatic acid in its own facility to continue the spark. These differences add further force, first to the observations already made respecting the spark in various gases (1422. 1423.), and then, to the proofs deducible from it, of the relation of the electrical forces to the particles of matter. 1464. The peculiar characters of nitrogen in relation to the electric discharge (1422. 1458.) must, evidently, have an important influence over the form and even the occurrence of lightning. Being that gas which most readily produces corusca- tions, and, by them, extends discharge to a greater distance than any other gas tried, it is also that which constitutes four fifths of our atmosphere; and as, in atmospheric electrical phenomena, one, and sometimes both the inductive forces are resident on the particles of the air, which, though probably affected as to conducting power by the aqueous particles in it, cannot be considered as a good conductor, so the peculiar power possessed by nitrogen, to originate and effect discharge in the form of a brush or of ramifications, has, probably, an important relation to its electrical service in nature, as it most seriously affects the character and condition of the discharge when made. The whole subject of discharge from and through gases is a most important one to science, and, if only in reference to atmospheric electricity, deserves extensive and close experimental investigation. Difference of discharge at the positive and negative conducting surfaces. 1465. I have avoided speaking of this well-known phenomenon more than was quite necessary, that I might bring together here what I have to say on the subject. When the brush discharge is observed in air at the positive and negative surfaces, there is a very striking difference, the true and full comprehension of which would, no doubt, be of the utmost importance to the physics of electricity; it would throw great light on our present subject, i.e. the molecular action of dielectrics under induction, and its consequences, and seems very open to, and accessible by, experimental inquiry. 1466. The difference in question used to be expressed in former times by saying, that a point charged positively gave brushes into the air, whilst the same point charged negatively gave a star. This is true only of bad conductors, or of metallic conductors charged intermittently, or otherwise controlled by collateral induction. If metallic points project freely into the air, the positive and negative light upon them differ very little in appearance, and the difference can be observed only upon close examination. 1467. The effect varies exceedingly under different circumstances, but, as we must set out from some position, may perhaps be stated thus: if a metallic wire with a rounded termination in free air be used to produce the brushy discharge, then the brushes obtained when the wire is charged negatively are very poor and small, by comparison with those produced when the charge is positive. Or if a large metal ball connected with the electrical machine be charged positively, and a fine uninsulated point be gradually brought towards it, a star appears on the point when at a considerable distance, which, though it becomes brighter, does not change its form of a star until it is close up to the ball: whereas, if the ball be charged negatively, the point at a considerable distance has a star on it as before; but when brought nearer, (in my case to the distance of $1\frac{1}{2}$ inches,) a brush formed on it, extending to the negative ball; and when still nearer, (at $\frac{1}{8}$ of an inch distance,) the brush ceased, and bright sparks passed. These variations, I believe, include the whole series of differ- ences, and they seem to show at once, that the negative surface tends to retain its discharging character unchanged, whilst the positive surface, under similar circumstances, permits of great variation. 1468. There are several points in the character of the negative discharge to air which it is important to observe. A metal rod, 0·3 of an inch in diameter, with a rounded end projecting into the air, was charged negatively, and gave a short noisy brush (fig. 8.). It was ascertained both by sight (1427. 1433.) and sound (1431.), that the successive discharges were very rapid in their recurrence, being seven or eight times more numerous in the same period, than those produced when the rod was charged positively to an equal degree. When the rod was positive, it was easy, by working the machine a little quicker, to replace the brush by a glow (1405. 1463.), but when it was negative no efforts could produce this change. Even by bringing the hand opposite the wire, the only effect was to increase the number of brush discharges in a given period, raising at the same time the sound to a higher pitch. 1469. A point opposite the negative brush exhibited a star, and as it was approximated caused the size and sound of the negative brush to diminish, and, at last, to cease, leaving the negative end silent and dark, yet effective as to discharge. 1470. When the round end of a smaller wire (fig. 9.) was advanced towards the negative brush, it (becoming positive by induction) exhibited the quiet glow at 8 inches distance, the negative brush continuing. When nearer, the pitch of the sound of the negative brush rose, indicating quicker intermittences (1431.); still nearer, the positive end threw off ramifications and distinct brushes; at the same time, the negative brush contracted in its lateral directions and collected together, giving a peculiar narrow longish brush, in shape like a hair pencil, the two brushes existing at once, but very different in their form and appearance, and especially in the more rapid recurrence of the negative discharges than of the positive. On using a smaller positive wire for the same experiment, the glow first appeared on it, and then the brush, the negative brush being affected at the same time; and the two at one distance became exceedingly alike in appearance, and the sounds, I thought, were in unison; at all events they were in harmony, so that the intermissions of discharge were either isochronous, or a simple ratio existed between the intervals. With a higher action of the machine, the wires being retained unaltered, the negative surface would become dark and silent, and a glow appear on the positive one. A still higher action changed the latter into a spark. Finer positive wires gave other variations of these effects, which I must not allow myself to go into here. 1471. A thinner rod was now connected with the negative conductor in place of the larger one (1468.), its termination being gradually diminished to a blunt point, as in fig. 10.; and it was beautiful to observe that, notwithstanding the variation of the brush, the same general order of effects was produced. The end gave a small sonorous negative brush, which the approach of the hand or a large conducting surface did not alter, until it was so near as to produce a spark. A fine point oppo- site to it was luminous at a distance; being nearer it did not destroy the light and sound of the negative brush, but only tended to have a brush produced on itself, which, at a still nearer distance, passed into a spark joining the two surfaces. 1472. When the distinct negative and positive brushes are produced simultaneously in relation to each other in air, the former almost always has a contracted form, as in fig. 11., very much indeed resembling the figure which the positive brush itself has when influenced by the lateral vicinity of positive parts acting by induction. Thus a brush issuing from a point in the re-entering angle of a positive conductor has the same compressed form (fig. 12.). 1473. The character of the negative brush is not affected by the chemical nature of the substances of the conductors (1454.), but only by their possession of the conducting power in a greater or smaller degree. 1474. Rarefaction of common air about a negative ball or blunt point facilitated the development of the negative brush, the effect being, I think, greater than on a positive brush, though great on both. Extensive ramifications could be obtained from a ball or end electrified negatively to the plate of the air-pump on which the jar containing it stood. 1475. A very important variation of the relative forms and conditions of the positive and negative brush takes place on varying the dielectric in which they are produced. The difference is so very great that it points to a specific relation of this form of discharge to the particular gas in which it takes place, and opposes the idea that gases are but obstructions to the discharge, acting one like another and merely in proportion to their pressure (1377.). 1476. In air, the superiority of the positive brush is well known (1467. 1472.). In nitrogen, it is as great or even greater than in air (1458.). In hydrogen, the positive brush loses a part of its superiority, not being so good as in nitrogen or air; whilst the negative brush does not seem injured (1459.). In oxygen, the positive brush is compressed and poor (1457.) ; whilst the negative did not sink in character: the two were so alike that the eye frequently could not tell the one from the other, and this similarity continued when the oxygen was gradually rarefied. In coal gas the brushes are difficult of production as compared to nitrogen (1460.), and the positive not much superior to the negative in its character, either at common or low pressures. In carbonic acid gas, this approximation of character also occurred. In muriatic acid gas the positive brush was very little better than the negative, and both difficult to produce (1462.) as compared with the facility in nitrogen or air. 1477. These experiments were made with rods of brass about a quarter of an inch thick having rounded ends, the ends being opposed in a glass globe 7 inches in diameter, containing the gas to be experimented with. The electric machine was used to communicate directly, sometimes the positive, and sometimes the negative, state, to the rod in connection with it. 1478. Thus we see that, notwithstanding there is a general difference in favour of the superiority of the positive brush over the negative, that difference is at its maximum in nitrogen and air; whilst in carbonic acid, muriatic acid, coal gas, and oxygen it diminishes, and at last becomes almost nothing. So that in this particular effect, as in all others yet examined, the evidence is in favour of that view which refers the results to a direct relation of the electric forces with the molecules of the matter concerned in the action (1421. 1423. 1463.). Even when special phenomena arise under the operation of the general law, the theory adopted seems fully competent to meet the case. 1479. Before I proceed further in tracing the probable cause of the difference between the positive and negative brush discharge, I wish to know the results of a few experiments which are in course of preparation: and thinking this Series of Researches long enough, I shall here close it with the expectation of being able in a few weeks to renew the inquiry, and entirely redeem my pledge (1306.). Royal Institution, Dec. 23rd, 1837.