On the Mathematical Theory of Suspension Bridges, with Tables for Facilitating Their Construction
Author(s)
Davies Gilbert
Year
1826
Volume
116
Pages
18 pages
Language
en
Journal
Philosophical Transactions of the Royal Society of London
Full Text (OCR)
XV. On the mathematical theory of suspension bridges, with tables for facilitating their construction. By Davies Gilbert, Esq. V.P.R.S. &c. Communicated March 9, 1826.
Read March 9, 1826.
My attention was first directed to a consideration of suspension bridges, and of the catenary curve on which their theory depends, when the plan for making such a communication across the Menai Straits was submitted to the Commissioners appointed by Parliament to improve the communication by roads and bridges through Wales. It then appeared to me, that the proposed depth of curvature, was not sufficient for ensuring such a degree of strength and permanence as would be consistent with the due execution of a great national work. This opinion I advanced as a Member of the Commission. But wishing to take on myself the full responsibility for such increased expense, as must of necessity be occasioned by enlarging the curvature, I also printed some approximations, hastily deduced, in the Quarterly Journal of Science; and derived from them a confirmation of the opinion that had been given. The interval between the points of support and the road-way of the Menai Bridge has in consequence been augmented to fifty feet; and it now possesses that full measure of strength, which experience has established as requisite and sufficient for works of iron not perfectly at rest.
Since bridges of suspension are obviously adapted to very general use, I have flattered myself with the hope of doing something serviceable to the public, by expanding into tables
the formulæ from which my approximations were derived; adding to them other formulæ and tables for the catenary of equal strength. A curve not merely of speculative curiosity, but of practical use, where a wide horizontal extent may chance to be combined with natural facilities for obtaining a correspondent height for the attachments.
Both the ordinary catenaries, and these of equal strength, like circles, parabolas, logarithmic curves, &c. have the property of being each identical with themselves in every respect but size: and as the radius, the parameter, and the subtangent give the respective magnitudes of these curves, so are the catenaries determined in magnitude by the tension (expressed in measures of the chain), which takes place at the middle point, or apex of the curve, where it is a minimum. Consequently, when this tension is determined or given, all the other relations may be expressed in the same manner as sines, cosines, &c. in the circle.
I assume that the first principles of the catenary curve are known; they will, consequently, be noted with no other view, than to derive from them ulterior properties.
For the ordinary catenary:
Let \(a\) = the tension at the apex, estimated in measures of the chain;
\(x\) = the absciss, the versed sine, or depth of curvature;
\(y\) = the ordinate, or semi-transverse length;
\(z\) = the length of the curve.
Then since the tension, \((a,)\) acts horizontally at the apex \((A,)\) since the weight of the chain \((z)\) acts at right angles to the former, and the force of suspension at \((P)\) acts in the direction of the tangent. These forces must be represented in direc-
tion and in magnitude by the incremental triangle Prp; and
As \( \dot{x} : \dot{y} :: z : a \); as \( \dot{x}^2 : \dot{y}^2 :: z^2 : a^2 \);
as \( \dot{x}^2 + \dot{y}^2 : \dot{x}^2 :: a^2 + z^2 : z^2 \);
But \( \dot{x}^2 + \dot{y}^2 = \dot{z}^2 \) universally.
Therefore, \( \dot{x}^2 : \dot{x}^2 :: a^2 + z^2 : z^2 \); and \( \dot{x} = \frac{z \dot{z}}{\sqrt{a^2 + z^2}} \);
consequently, \( x = \sqrt{a^2 + z^2 - a} \).
Equation A
\[
\begin{align*}
\text{No. 1. } & x = \sqrt{a^2 + z^2 - a} \\
\text{No. 2. } & z = \sqrt{2ax + x^2} \\
\text{No. 3. } & a = \frac{z^2 - x^2}{z \cdot x}
\end{align*}
\]
Again; \( \dot{x} : \dot{y} :: z : a \); \( \dot{y} = \frac{a \dot{x}}{z} \), substituting from Eq. A.
\[
\dot{y} = \frac{a \dot{x}}{\sqrt{2ax + x^2}}; \quad \text{(No. 2. Equ. B. No. 1.)}
\]
\( y = a \times \text{natural log. of } \frac{a + x + \sqrt{2ax + x^2}}{a} = a \times \text{nat. log. } \frac{a + x + z}{a} \); or by substituting its value for \( a \) from Equ. A. No. 3, and dividing by \( z + x \).
Equ. B. No. 2.) \( y = a \times \text{nat. log. } \frac{z + x}{z - x} \);
or, if \( \frac{z \dot{z}}{\sqrt{a^2 + z^2}} \) be substituted for \( \dot{x} \) in
\[
\dot{y} = \frac{a \dot{x}}{z}. \quad \dot{y} = a \times \frac{\dot{z}}{\sqrt{a^2 + z^2}}
\]
and
Equ. B. No. 3.) \( y = a \times \text{nat. log. } \frac{\sqrt{a^2 + z^2 + z}}{a} \).
To find \( x \) when \( a \) and \( y \) are given:
Let \( N = \) the number of which \( \frac{y}{a} \) (Equ. B. No. 1.) is the natural logarithm.
Then \( aN = a + x + \sqrt{2ax + x^2} \), and \( \sqrt{2ax + x^2} = aN - a - x \),
make \( aN - a = M \). Then \( 2ax + x^2 = M^2 - 2Mx + x^2 \), and
Equ. C.) \( x = \frac{M^2}{2M + 2a} \),
\( x \) being known.
\( z \) is found from Equ. A. No. 2. and
T, the tension at P, being obviously equal to $\sqrt{a^2 + z^2}$,
is equal (Eq. A. No. 2.) to $\sqrt{a^2 + 2ax + x^2} = a + x$.
The angle of suspension is derived from the common ana-
logy of the incremental triangle, and of the forces corres-
ponding with it.
Tables I. and II. are constructed from these theorems, and
their use will be best explained by an example.
Let the span proposed for a suspension bridge be 800 feet,
and let the adjunct weight of suspension rods, road-way, &c.
be taken at one-half of the weight of the chains; then, if the
full tenacity of iron is represented by the modulus of 14800
feet, the virtual modulus for the whole weight must be re-
duced in the proportion of $2 + 1 : 2$, or to 9867 feet; and let
it be determined to load the chains at the point of their
greatest strain, that is at the points of suspensions, with one-
sixth part of the weight they are theoretically capable of
sustaining.
Then, since the semi-span is 400 feet, and $y$ in Table I. is
taken at an hundred measures, each of these measures must
be four feet, and the weight expressed in the same measures
to be sustained at the points of suspension will be $9867 \div 6 \times 4$
$= 411,125$. Now it appears from Table I. where $y$ is uni-
formly an hundred, that when $T = 412$
\[
\begin{align*}
a &= 400 \text{ measures or } 1600 \text{ feet}, \\
x &= 12.565 - - 50.260 \\
z &= 101.045 - 404.180 \\
&< \text{ the angle of suspension } 75^\circ 49'.
\end{align*}
\]
Having now determined $a$, the modulus, latus rectum, or
parameter of the curve. In Table II. will be found all the
respective quantities for each measure of $y$. But as $a$ is in
MDCCXXVI.
this table taken at an hundred measures, and it has been found to be 400 of the former, each measure here must be 4 times 4, or 16 feet; consequently, each gradation of \( y \) will also be 16 feet, and the whole semi-span \( \frac{400}{16} \) or 25 measures. And since \( z \) will be given in the Table for each measure of \( y \), the adjunct weights may readily be adapted to a strict preservation of the catenary form.
At 21 measures of \( y \). \( z = 21.1547 \)
20 measures of \( y \). \( z = 20.1335 \)
\[
1.0212 \times 16 = 16.3392 \text{ feet.}
\]
Consequently while the ordinate extends one measure, or 16 feet from the 20th to the 21st measure, the length of the curve will increase 16 feet and \( \frac{1}{3} \) very nearly, and the adjunct weight should be increased in the same proportion.
At 21 the length of \( x \) is 2,2131 measures, or multiplied by 16 = 35,4096 feet, the length of the suspension rods to the level of the apex.
It appears from Table I. that the tension \( T \) for a given half span of 100 measures is very nearly at its minimum when \( x = 65.85 \) measures, almost one-third part of the whole span. In the example taken above \( 65.85 \times 4 = 263.4 \) feet, an height not to be attained in practice, nor strictly applicable if it could be reached, because of the great length of suspension. If the span and height (\( 2y \) and \( x \)) were given, the other quantities would be found in a similar manner.
In the catenary of equal strength
\( a \cdot x \cdot y \cdot z \) remain as before; but another symbol must now be introduced, \( \zeta = \) the mass of the chain. Then will the
forces be represented as in the ordinary curve by the incremental triangle Prp. But now \( \dot{x} : \dot{y} :: \zeta : a \). And by a repetition of the former steps \( \dot{x} = \frac{\zeta \dot{z}}{\sqrt{a^2 + \zeta^2}} \).
But on the principle of equal strength,
As \( a : \sqrt{a^2 + \zeta^2} :: \dot{z} : \zeta \)
therefore \( \dot{z} = a \times \frac{\zeta}{\sqrt{a^2 + \zeta^2}} \) and
Equ. D.) \( z = a \times \text{nat. log. } \frac{\sqrt{a^2 + \zeta^2} + \zeta}{a} \);
and by substituting \( a \times \frac{\zeta}{\sqrt{a^2 + \zeta^2}} \) for \( \dot{z} \) in the equation \( \dot{x} = \frac{\zeta \dot{z}}{\sqrt{a^2 + \zeta^2}} \)
\( \dot{x} = a \times \frac{\zeta}{a^2 + \zeta^2} \); consequently,
Equ. E.) \( x = \frac{a}{2} \times \text{nat. log. } \frac{a^2 + \zeta^2}{a^2} \).
Again, from the first analogy, \( \dot{y} = \frac{a \dot{z}}{\zeta} \),
substitute for \( \dot{x} \) its equal \( a \times \frac{\zeta}{a^2 + \zeta^2} \), and
\( \dot{y} = a^2 \times \frac{\zeta}{a^2 + \zeta^2} \); therefore,
Equ. F.) \( y = \text{the cir. arc. of which } \zeta \text{ is the tangent to radius } a.
\( a \) and \( y \) being given to find \( \zeta \). Multiply \( \frac{y}{a} \) by 57°,29578 (the tab. log. 1.7581226) and reduce the decimals of a degree into minutes and seconds; then will the tangent of that arc, multiplied by \( a \), be equal to \( \zeta \).
And when \( \zeta \) has been determined, the other columns of Tables III. and IV. are constructed from the above theorems, in a manner perfectly similar to that used in calculating of Tables I. and II.; and they may be illustrated by the same example; observing that \( a \), now represents the uniform tension on each given magnitude of iron throughout the chains,
and that the column T has the whole pull which any building or support may have to sustain in the direction of the tangent.
In Table III. \( y \) being, as before, an hundred measures of four feet each, \( a \) must be sought = 411,125, and by proportioning between 420 and 400
\[
\begin{align*}
x &= 12.2904 \\
z &= 101.0020 \\
\zeta &= 102.0235 \\
T &= 423.6019
\end{align*}
\]
\[
\begin{align*}
&- - - - 49.1616 \\
&- - - - 404.0080 \\
&- - - - 408.0940 \\
&- - - - 1694.4076 \\
< .76° 3' 17''.
\end{align*}
\]
\( a \), or the modulus of this curve being fixed at 411,125 measures of 4 feet each, or at 1644.5 feet; and \( a \) in Table IV. being taken at 100 measures, each one will be 16,445 feet, and all the quantities are given for each gradation of \( y \).
Thus at 21 measures of \( y \). \( z = 21.1564 \) \( \zeta = 21.3142 \)
\[
\begin{align*}
20 \text{ measures of } y. & \quad z = 20.1347 \quad \zeta = 20.2710 \\
1,0217 & \quad 1,04332
\end{align*}
\]
\( 1.0217 \times 16.445 = 16.8019 \) feet the increase of \( z \);
\( 1.0432 \times 16.445 = 17.1410 \) feet the increase of material in \( \zeta \):
consequently \( \frac{1.0432}{1.0217} = 1.021 \), the quantity of matter in this part of the chain to maintain uniform strength, that at the apex being unity, and the adjunct matter should be in the proportion of 1 to 1,04332.
Moreover \( x \) the versed sine, or the length of the suspension rods to the level of the apex will be at
21 measures of \( y \). \( x = 2.2214 \) measures \( \times 16,445 = 36,531 \) ft.
20 measures of \( y \). \( x = 2.0135 \) measures \( \times 16,445 = 33,112 \) ft.
Assuming in the ordinary catenary that \( x = 65.85 \) measures, is the height of the attachment to give a maximum extent of span with any virtual tenacity of material, \( a \) will be 85 measures, and \( a + x = 85 + 65.85 \), or 150.85 measures equal the given virtual tenacity. This taken as before at \( \frac{2}{3} \) of \( \frac{1}{6} \) of 14800 feet, will give 10,875 feet for each measure, and the whole span at \( 2y = 2175 \) feet. Chains merely supporting themselves, and at the utmost of their tenacity will extend nine times further, or to 19575 feet.
In the catenary of equal strength, the semi-span being equal to the circular arc of which \( \zeta \) is the tangent to radius \( a \), it is obvious that \( a \times \text{semi-cir. arc} \) must be the limit of the span. Therefore if \( a = \frac{2}{3} \) of \( \frac{1}{6} \) of 14800 feet, or 1644.44 \( a \times \frac{c}{2} = 5154 \) feet.
And if the chains merely sustain themselves at their utmost tenacity, 5154 \( \times 9 \) will give 46385 feet, equal to 8,785 miles, or somewhat more than 8 miles and three-quarters.
But this case is purely hypothetical, for the purpose of ascertaining a limit, since \( \zeta \), the mass or weight of the chain must be infinite, and consequently its length: the figure approaching indefinitely near to that of a chain sustaining itself from an infinite height, which figure is identical with that of a building, capable so far as pressure and the strength of materials are alone concerned, of being carried to any elevation whatever. This figure is readily determined:
Let \( a = \) the section of such a building at its base,
\( y = \) the section at any height,
\( x = \) that height;
Then, since the section and the superincumbent pressure must always be in the same proportion to each other, \( \frac{x}{y} \) and \( \frac{y}{x} \) are in a constant ratio. Let then \( \frac{x}{m} = -\frac{y}{m} \) where \( m \) is the modulus of pressure in the given material; but when \( x = 0, y = a \), therefore \( \frac{x}{m} = \text{the nat. log. } \frac{a}{y} \); or \( \frac{x}{A.m} = \text{the tab. log. } \frac{a}{y} \). \( A = 2,3025851 \); but if \( e \) and \( y \) the homologous sides or diameters of these sections; then, \( \frac{x}{z.A.m} = \text{tab. log. } \frac{e}{y} \).
Finally, I would notice a correction of frequent use in practical surveying, to be deduced from the properties of the catenary curve.
When the measuring chain is extended over ground uneven, intersected by ditches, or made soft by water, it cannot be laid flat, but must be elevated at both its extremities, while the middle just touches the surface: thus giving the measurement too great by the difference between the whole perifery and the double ordinate.
Let \( z = \) the half length of the chain.
\( x = \) the elevation at each end equal to the depths of curvature.
Then Equ. B. No. 2. \( y = a \times \text{nat. log. } \frac{z+x}{z-x} \),
And Equ. A. No. 3. \( a = \frac{z^2-x^2}{2x} \); therefore
\( y = \frac{z^2-x^2}{2x} \times \text{nat. log. } \frac{z+x}{z-x} \).
But when \( x \) is very small in comparison of \( z \), the nat. log. of \( \frac{z+x}{z-x} \) becomes \( \frac{2x}{z} \), and
\( y = \frac{z^2-x^2}{2x} \times \frac{2x}{z} = z - \frac{x^2}{z} \);
\( \frac{x^2}{z} \) is therefore the difference between half the chain and the
ordinate. If \( x \) be expressed in parts of the whole chain, \( 4x^2 \) will be the correction for the difference between the perifery and double ordinate.
If \( x \) (the elevation at each end) be one link of the common measuring chain, \( 4x^2 = \frac{1}{25} \) of a link, \( \frac{1}{25} \) of \( \frac{66}{100} \) of a foot \( = 0.3168 \) of an inch, varying as the squares of \( x \).
If half the chain were considered as a straight line, and the hypotenuse of a right angled triangle, the horizontal distance would be \( z - \frac{x^2}{2z} \), giving but one half of the true difference, \( 0.1584 \) parts of an inch.
And if the chain were supposed to be in the arc of a circle, \( z = y + \frac{y^3}{6a^2} \), &c. And \( y = \sqrt{2ax - x^2} \) (when \( x \) is very small in comparison with \( a \)) \( = \sqrt{2ax} \). Therefore \( i = \frac{y^2}{2x} \).
And since \( y \) is also small in comparison of \( a \), the second term of the series \( \left( \frac{y^3}{6a^2} \right) \) will be the difference between the ordinate and the arc. Then substituting \( \frac{y^4}{4x^2} \) for \( a^2 \),
\( \frac{y^3}{6a^2} = \frac{2x^2}{3y} \); or if \( x \) be expressed in parts of the whole chain,
\( = \frac{8}{3}x^2 \) will be the whole correction, \( = 0.2112 \) parts of an inch, or two-thirds of the true difference.
Formulae might readily be constructed for different elevations of the extremities of the chain, but they would prove much too complicated for practical use.
One further observation may be applicable to suspension bridges, wholly unconnected with the preceding investigations.
In the event of their wanting stability to counteract and restrain undulatory motion, the ballustrades may be carried
to any required height, and rendered inflexible by diagonal braces; and if further means were required for imparting stability, such braces might be adjusted with screws to the suspension rods themselves, after these rods had acquired their exact positions, on the completion of the work.
| \( y = 100 \) | Table I.— Ordinary Catenary. |
|---|---|---|---|---|---|
| \( a \) | N. | x. | z. | T. | Angle. |
| 2000 | 1.051271 | 2.500511 | 100.041471 | 2002.500511 | 87° 8' 11" |
| 1950 | 1.052619 | 2.504593 | 100.042440 | 1952.504593 | 87° 3' 46" |
| 1900 | 1.054041 | 2.632163 | 100.045727 | 1902.632163 | 86° 59' 8" |
| 1850 | 1.055541 | 2.703298 | 100.047540 | 1852.703298 | 86° 54' 15" |
| 1800 | 1.057127 | 2.778421 | 100.050163 | 1802.778421 | 86° 49' 6" |
| 1750 | 1.058807 | 2.857914 | 100.054318 | 1752.857914 | 86° 43' 40" |
| 1700 | 1.060588 | 2.942018 | 100.057566 | 1702.942018 | 86° 37' 53" |
| 1650 | 1.062480 | 3.031204 | 100.060788 | 1653.031204 | 86° 31' 46" |
| 1600 | 1.064494 | 3.125974 | 100.064421 | 1603.125974 | 86° 25' 16" |
| 1550 | 1.066642 | 3.226852 | 100.068245 | 1553.226852 | 86° 18' 21" |
| 1500 | 1.068939 | 3.334558 | 100.073939 | 1503.334558 | 86° 10' 59" |
| 1450 | 1.071399 | 3.449618 | 100.078929 | 1453.449618 | 86° 3' 6" |
| 1400 | 1.074041 | 3.572907 | 100.084490 | 1403.572907 | 85° 54' 39" |
| 1350 | 1.076886 | 3.705344 | 100.090750 | 1353.705344 | 85° 45' 35" |
| 1300 | 1.079958 | 3.847958 | 100.097440 | 1303.847958 | 85° 35' 45" |
| 1250 | 1.083286 | 4.002035 | 100.105403 | 1254.002035 | 85° 25' 16" |
| 1200 | 1.086903 | 4.168981 | 100.114680 | 1204.168981 | 85° 13' 51" |
| 1150 | 1.090849 | 4.350543 | 100.125801 | 1154.350543 | 85° 1' 26" |
| 1100 | 1.095169 | 4.548545 | 100.137346 | 1104.548545 | 84° 47' 54" |
| 1050 | 1.099920 | 4.765440 | 100.150553 | 1054.765440 | 84° 33' 5" |
| 1000 | 1.105170 | 5.004084 | 100.165906 | 1005.004084 | 84° 16' 48" |
The column in Table I. marked N (where the numbers equal \( e^{\frac{y}{a}} \)) is given as the medium conducting to all the subsequent calculations.
Table I. continued.—The Ordinary Catenary.
| \( y = 100 \) | \( a \) | N. | \( x \) | \( z \) | T. | Angle. |
|---|---|---|---|---|---|---|
| 1000 | 1.105170 | 5.004084 | 100.165906 | 1005.004084 | 84° 16' 48" |
| 980 | 1.107428 | 5.106408 | 100.173025 | 985.106408 | 84° 9' 49" |
| 960 | 1.109785 | 5.213007 | 100.180582 | 965.213007 | 84° 2' 13" |
| 940 | 1.112247 | 5.324098 | 100.188974 | 945.324098 | 83° 54' 58" |
| 920 | 1.114822 | 5.440495 | 100.196191 | 925.440495 | 83° 47' 4" |
| 900 | 1.117519 | 5.561266 | 100.205825 | 905.561266 | 83° 38' 48" |
| 880 | 1.120344 | 5.687876 | 100.214837 | 885.687876 | 83° 30' 11" |
| 860 | 1.123309 | 5.820479 | 100.225255 | 865.820479 | 83° 21' 9" |
| 840 | 1.126423 | 5.959394 | 100.235949 | 845.959394 | 83° 11' 42" |
| 820 | 1.129698 | 6.105033 | 100.247321 | 826.105033 | 83° 1' 47" |
| 800 | 1.133148 | 6.258102 | 100.260296 | 806.258102 | 82° 51' 23" |
| 780 | 1.136785 | 6.418938 | 100.273356 | 786.418938 | 82° 40' 28" |
| 760 | 1.140627 | 6.588360 | 100.288153 | 766.588360 | 82° 28' 57" |
| 740 | 1.144691 | 6.767004 | 100.304328 | 746.767004 | 82° 16' 50" |
| 720 | 1.148996 | 6.955577 | 100.321527 | 726.955577 | 82° 4' 3" |
| 700 | 1.153504 | 7.154926 | 100.339869 | 707.154926 | 81° 50' 33" |
| 680 | 1.158422 | 7.366193 | 100.360075 | 687.366193 | 81° 36' 15" |
| 660 | 1.163595 | 7.590181 | 100.382517 | 667.590181 | 81° 21' 6" |
| 640 | 1.169118 | 7.828368 | 100.407143 | 647.828368 | 81° 5' 1" |
| 620 | 1.175025 | 8.081923 | 100.433570 | 628.081923 | 80° 47' 4" |
| 600 | 1.181360 | 8.352608 | 100.463404 | 608.352608 | 80° 29' 40" |
| 580 | 1.188169 | 8.642308 | 100.495985 | 588.642308 | 80° 10' 11" |
| 560 | 1.195508 | 8.952299 | 100.532176 | 568.952299 | 79° 49' 27" |
| 540 | 1.203419 | 9.283888 | 100.562366 | 549.283888 | 79° 27' 2" |
| 520 | 1.212043 | 9.645021 | 100.617335 | 529.645021 | 79° 2' 56" |
| 500 | 1.221402 | 10.033315 | 100.667683 | 510.033315 | 78° 36' 59" |
| 480 | 1.231625 | 10.454508 | 100.725490 | 490.454508 | 78° 8' 55" |
| 460 | 1.242830 | 10.912412 | 100.789382 | 470.912412 | 77° 38' 28" |
| 440 | 1.255172 | 11.412622 | 100.863052 | 451.412622 | 77° 5' 23" |
| 420 | 1.268829 | 11.961025 | 100.947150 | 431.961025 | 76° 29' 6" |
| 400 | 1.284025 | 12.565207 | 101.044792 | 412.565207 | 75° 49' 2" |
| 380 | 1.301032 | 13.233994 | 101.158163 | 393.233994 | 75° 5' 35" |
| 360 | 1.320192 | 13.978305 | 101.290757 | 373.978305 | 74° 17' 7" |
| 340 | 1.341941 | 14.812141 | 101.447796 | 354.812141 | 73° 32' 10" |
| 320 | 1.366837 | 15.752501 | 101.635337 | 335.752501 | 72° 22' 46" |
| 300 | 1.395612 | 16.821529 | 101.862069 | 316.821529 | 71° 14' 44" |
| 280 | 1.429239 | 18.047685 | 102.139232 | 298.047685 | 69° 57' 31" |
| 260 | 1.469049 | 19.458933 | 102.483745 | 279.458933 | 68° 29' 13" |
| 240 | 1.516896 | 21.126437 | 102.893226 | 261.126437 | 66° 47' 38" |
| 220 | 1.575420 | 23.118850 | 103.473548 | 243.118850 | 64° 48' 38" |
| 200 | 1.648721 | 25.525175 | 104.219022 | 225.525175 | 62° 28' 34" |
| 180 | 1.743908 | 28.559946 | 105.343499 | 208.559946 | 59° 39' 43" |
| 160 | 1.868245 | 32.280531 | 106.638654 | 192.280531 | 56° 19' 0" |
| 140 | 2.042722 | 37.258541 | 108.722538 | 177.258541 | 52° 10' 2" |
| 120 | 2.300975 | 44.134402 | 111.982596 | 164.134402 | 46° 58' 48" |
| 100 | 2.718281 | 54.308027 | 117.520071 | 154.308027 | 40° 23' 42" |
| 95 | 2.865180 | 57.674415 | 119.517684 | 152.674415 | 38° 28' 45" |
| 90 | 3.037731 | 61.511583 | 121.884206 | 151.511583 | 36° 26' 34" |
| 85 | 3.240907 | 65.521600 | 124.624934 | 150.521600 | 34° 17' 44" |
| 80 | 3.490342 | 71.073875 | 128.153485 | 151.073875 | 31° 58' 28" |
| 75 | 3.793667 | 77.147407 | 132.377616 | 152.147407 | 29° 32' 4" |
| 70 | 4.172733 | 84.433443 | 137.657866 | 154.433443 | 26° 57' 10" |
MDCCXXVI.
Table II.—The Ordinary Catenary.
| N. | y. | x. | z. | T. | Angle |
|--------|-------|----------|----------|------------|-------|
| 1.010050 | 1 | .004999 | 1.000000 | 100.004999 | 89°25'39" |
| 1.020201 | 2 | .020000 | 2.000100 | 100.020000 | 88°51'15" |
| 1.030454 | 3 | .045001 | 3.000398 | 100.045001 | 88°16'53" |
| 1.040810 | 4 | .080007 | 4.000992 | 100.080007 | 87°42'31" |
| 1.051271 | 5 | .125025 | 5.002074 | 100.125025 | 87°8'11" |
| 1.061836 | 6 | .180050 | 6.003540 | 100.180050 | 86°33'51" |
| 1.072508 | 7 | .245098 | 7.005701 | 100.245098 | 85°59'33" |
| 1.083287 | 8 | .320170 | 8.008520 | 100.320170 | 85°25'16" |
| 1.094174 | 9 | .405271 | 9.012128 | 100.405271 | 84°51'1" |
| 1.105170 | 10 | .500408 | 10.016591| 100.500408 | 84°16'48" |
| 1.116278 | 11 | .605609 | 11.022190| 100.605609 | 83°42'36" |
| 1.127496 | 12 | .720855 | 12.028744| 100.720855 | 83°8'37" |
| 1.138828 | 13 | .846186 | 13.036613| 100.846186 | 82°34'20" |
| 1.150273 | 14 | .981591 | 14.045708| 100.981591 | 82°0'14" |
| 1.161834 | 15 | 1.127107 | 15.056292| 101.127107 | 81°26'15" |
| 1.173510 | 16 | 1.282710 | 16.068289| 101.282710 | 80°52'17" |
| 1.185304 | 17 | 1.448471 | 17.081928| 101.448471 | 80°18'22" |
| 1.197217 | 18 | 1.624373 | 18.097326| 101.624373 | 79°44'31" |
| 1.209249 | 19 | 1.810427 | 19.114472| 101.810427 | 79°10'43" |
| 1.221402 | 20 | 2.006663 | 20.133536| 102.006663 | 78°36'59" |
| 1.233678 | 21 | 2.213114 | 21.154085| 102.213114 | 78°3'19" |
| 1.246076 | 22 | 2.429703 | 22.177836| 102.429703 | 77°29'43" |
| 1.258600 | 23 | 2.656680 | 23.203319| 102.656680 | 76°56'11" |
| 1.271249 | 24 | 2.893847 | 24.231042| 102.893847 | 76°22'45" |
| 1.284025 | 25 | 3.141302 | 25.261197| 103.141302 | 75°49'22" |
| 1.296929 | 26 | 3.399061 | 26.293838| 103.399061 | 75°16'5" |
| 1.309904 | 27 | 3.667187 | 27.329212| 103.667187 | 74°42'53" |
| 1.323129 | 28 | 3.945662 | 28.367237| 103.945662 | 74°9'46" |
| 1.336427 | 29 | 4.234542 | 29.408157| 104.234542 | 73°36'44" |
| 1.349838 | 30 | 4.533833 | 30.451966| 104.533833 | 73°3'48" |
| 1.363424 | 31 | 4.843577 | 31.498822| 104.843577 | 72°30'58" |
| 1.377127 | 32 | 5.163822 | 32.548877| 105.163822 | 71°58'13" |
| 1.390968 | 33 | 5.494589 | 33.602210| 105.494589 | 71°25'35" |
| 1.404947 | 34 | 5.835881 | 34.658818| 105.835881 | 70°53'3" |
| 1.419067 | 35 | 6.187768 | 35.718931| 106.187768 | 70°20'36" |
| 1.433329 | 36 | 6.550276 | 36.782633| 106.550276 | 69°48'18" |
| 1.447734 | 37 | 6.923431 | 37.849968| 106.923431 | 69°16'6" |
| 1.462284 | 38 | 7.307284 | 38.921115| 107.307284 | 68°44'0" |
| 1.476980 | 39 | 7.701863 | 39.996336| 107.701863 | 68°12'1" |
| 1.491824 | 40 | 8.107217 | 41.075182| 108.107217 | 67°40'10" |
| 1.506817 | 41 | 8.523379 | 42.158320| 108.523379 | 67°8'25" |
| 1.521961 | 42 | 8.950402 | 43.245697| 108.950402 | 66°36'48" |
| 1.537257 | 43 | 9.388315 | 44.337834| 109.388315 | 66°5'19" |
| 1.552706 | 44 | 9.837146 | 45.434453| 109.837146 | 65°33'57" |
| 1.568312 | 45 | 10.297011| 46.534188| 110.297011 | 65°2'43" |
| 1.584073 | 46 | 10.767851| 47.639448| 110.767851 | 64°31'46" |
| 1.599994 | 47 | 11.249817| 48.749582| 111.249817 | 64°0'39" |
| 1.616074 | 48 | 11.742877| 49.864522| 111.742877 | 63°29'49" |
| 1.632315 | 49 | 12.247092| 50.984407| 112.247092 | 63°59'7" |
| 1.648721 | 50 | 12.762587| 52.109512| 112.762587 | 62°28'34" |
Table II. continued.—The Ordinary Catenary.
\[a = 100.\]
| N. | y. | x. | z. | T. | Angle. |
|------|--------|--------|--------|--------|--------|
| 1.665290 | 51 | 13.289300 | 53.239600 | 113.289300 | 6° 58" 9 |
| 1.682027 | 52 | 13.827388 | 54.375311 | 113.827388 | 61 27 53 |
| 1.698932 | 53 | 14.376853 | 55.516346 | 114.376853 | 60 57 45 |
| 1.716006 | 54 | 14.937727 | 56.662872 | 114.937727 | 60 27 46 |
| 1.733252 | 55 | 15.510107 | 57.815092 | 115.510107 | 59 57 56 |
| 1.750672 | 56 | 16.094061 | 58.973138 | 116.094061 | 59 28 14 |
| 1.768266 | 57 | 16.689588 | 60.137011 | 116.689588 | 58 58 42 |
| 1.786037 | 58 | 17.290790 | 61.306900 | 117.290790 | 58 29 19 |
| 1.803988 | 59 | 17.916770 | 62.483020 | 117.915770 | 58 0 5 |
| 1.822118 | 60 | 18.546493 | 63.665306 | 118.546493 | 57 31 1 |
| 1.840431 | 61 | 19.189099 | 64.854000 | 119.189099 | 57 2 5 |
| 1.858927 | 62 | 19.835386 | 66.049113 | 119.835386 | 56 33 20 |
| 1.877610 | 63 | 20.510098 | 67.250901 | 120.510098 | 56 4 43 |
| 1.896480 | 64 | 21.186333 | 68.459366 | 121.188633 | 55 36 16 |
| 1.915540 | 65 | 21.879300 | 69.674600 | 121.879300 | 55 7 59 |
| 1.934792 | 66 | 22.582171 | 70.897028 | 122.582171 | 54 39 52 |
| 1.954237 | 67 | 23.297283 | 72.126416 | 123.297283 | 54 11 54 |
| 1.973877 | 68 | 24.024709 | 73.362990 | 124.024709 | 53 44 6 |
| 1.993715 | 69 | 24.764560 | 74.606930 | 124.764560 | 53 16 28 |
| 2.013752 | 70 | 25.510873 | 75.858326 | 125.510873 | 52 48 59 |
| 2.033990 | 71 | 26.281725 | 77.117274 | 126.281725 | 52 21 41 |
| 2.054433 | 72 | 27.059265 | 78.384034 | 127.059265 | 51 54 33 |
| 2.075080 | 73 | 27.849426 | 79.658573 | 127.849426 | 51 27 34 |
| 2.095935 | 74 | 28.652451 | 80.941048 | 128.652451 | 51 0 46 |
| 2.117000 | 75 | 29.468327 | 82.231672 | 129.468327 | 50 34 8 |
| 2.138276 | 76 | 30.297123 | 83.530476 | 130.297123 | 50 7 40 |
| 2.159766 | 77 | 31.138056 | 84.837643 | 131.138056 | 49 41 22 |
| 2.181472 | 78 | 31.993903 | 86.153296 | 131.993903 | 49 15 14 |
| 2.203396 | 79 | 32.862044 | 87.477555 | 132.862044 | 48 49 16 |
| 2.225540 | 80 | 33.743457 | 88.810542 | 133.743457 | 48 23 29 |
| 2.247907 | 81 | 34.638263 | 90.154236 | 134.638263 | 47 57 52 |
| 2.270500 | 82 | 35.546581 | 91.503418 | 135.546581 | 47 32 25 |
| 2.293318 | 83 | 36.463871 | 92.863428 | 136.463871 | 47 7 8 |
| 2.316366 | 84 | 37.403837 | 94.232762 | 137.403837 | 46 42 2 |
| 2.339646 | 85 | 38.353056 | 95.611543 | 138.353056 | 46 17 6 |
| 2.363160 | 86 | 39.310110 | 96.999880 | 139.310110 | 45 52 20 |
| 2.386910 | 87 | 40.293084 | 98.397915 | 140.293084 | 45 27 45 |
| 2.410900 | 88 | 41.284143 | 99.805856 | 141.284143 | 45 3 20 |
| 2.435129 | 89 | 42.280243 | 101.236566 | 142.280243 | 44 39 5 |
| 2.459602 | 90 | 43.308592 | 102.651607 | 143.308592 | 44 15 1 |
| 2.484322 | 91 | 44.342313 | 104.080886 | 144.342313 | 43 51 7 |
| 2.509290 | 92 | 45.390455 | 105.538544 | 145.390455 | 43 27 23 |
| 2.533983 | 93 | 46.439931 | 106.967368 | 146.439931 | 43 4 18 |
| 2.559981 | 94 | 47.539444 | 108.467655 | 147.539444 | 42 40 26 |
| 2.585709 | 95 | 48.625206 | 109.948393 | 148.625206 | 42 17 13 |
| 2.611696 | 96 | 49.720447 | 111.440152 | 149.720447 | 41 54 10 |
| 2.637944 | 97 | 50.851184 | 112.943315 | 150.851184 | 41 31 18 |
| 2.664455 | 98 | 51.988313 | 114.457186 | 151.988313 | 41 8 36 |
| 2.691234 | 99 | 53.140537 | 115.982862 | 153.140537 | 40 46 4 |
| 2.718281 | 100 | 54.308027 | 117.520072 | 154.308027 | 40 23 42 |
Table III. The Catenary of equal strength.
| \( y = 100 \) |
|---|---|---|---|---|---|
| \( a \) | \( x \) | \( z \) | \( \zeta \) | \( T \) | Angle |
| 1000 | 5.008288 | 100.166600 | 100.334300 | 1005.020800 | 0° 16' 13" |
| 980 | 5.110881 | 100.173640 | 100.348276 | 985.124220 | 84° 9' 12" |
| 960 | 5.217781 | 100.181250 | 100.363200 | 965.232000 | 84° 1' 54" |
| 940 | 5.329126 | 100.188850 | 100.378552 | 945.344276 | 83° 54' 16" |
| 920 | 5.445471 | 100.197071 | 100.395276 | 925.461072 | 83° 46' 19" |
| 900 | 5.566977 | 100.202654 | 100.413000 | 905.584230 | 83° 38' 1" |
| 880 | 5.694003 | 100.215333 | 100.432288 | 885.712432 | 83° 29' 20" |
| 860 | 5.827073 | 100.225792 | 100.452730 | 865.846882 | 83° 20' 15" |
| 840 | 5.966506 | 100.237329 | 100.475340 | 845.987772 | 83° 10' 44" |
| 820 | 6.112609 | 100.247806 | 100.497724 | 826.135404 | 83° 0' 45" |
| 800 | 6.266274 | 100.261054 | 100.523680 | 806.290880 | 82° 50' 16" |
| 780 | 6.427811 | 100.274590 | 100.551048 | 786.454344 | 82° 39' 15" |
| 760 | 6.598152 | 100.289657 | 100.580680 | 766.626896 | 82° 27' 40" |
| 740 | 6.777369 | 100.305695 | 100.613064 | 746.808518 | 82° 15' 25" |
| 720 | 6.966790 | 100.322732 | 100.647648 | 727.000673 | 82° 2' 32" |
| 700 | 7.167238 | 100.342923 | 100.685480 | 707.204050 | 81° 48' 53" |
| 680 | 7.379542 | 100.362168 | 100.720972 | 687.419752 | 81° 34' 26" |
| 660 | 7.604848 | 100.384645 | 100.772166 | 667.647826 | 81° 19' 7" |
| 640 | 7.844443 | 100.409125 | 100.821568 | 647.892736 | 81° 2' 51" |
| 620 | 8.099715 | 100.430355 | 100.876232 | 628.152876 | 80° 45' 31" |
| 600 | 8.370382 | 100.465909 | 100.930680 | 608.430840 | 80° 27' 2" |
| 580 | 8.663690 | 100.498855 | 101.002534 | 588.728710 | 80° 7' 17" |
| 560 | 8.976381 | 100.535447 | 101.079360 | 569.048704 | 79° 46' 7" |
| 540 | 9.312582 | 100.576282 | 101.158740 | 549.393354 | 79° 23' 23" |
| 520 | 9.675126 | 100.621836 | 101.250968 | 529.765704 | 78° 58' 53" |
| 500 | 10.067350 | 100.679481 | 101.362400 | 510.169400 | 78° 32' 27" |
| 480 | 10.552010 | 100.780247 | 101.472192 | 490.668864 | 78° 3' 48" |
| 460 | 10.956213 | 100.796941 | 101.605490 | 471.087748 | 77° 32' 39" |
| 440 | 11.402781 | 100.872044 | 101.757920 | 451.613044 | 76° 58' 41" |
| 420 | 12.018908 | 100.958305 | 101.933328 | 432.192558 | 76° 21' 29" |
| 400 | 12.630692 | 101.056700 | 102.136560 | 412.832200 | 75° 40' 33" |
| 380 | 13.312576 | 101.174410 | 102.373976 | 393.548520 | 74° 55' 19" |
| 360 | 14.071210 | 101.311236 | 102.653784 | 374.349582 | 74° 5' 4" |
| 340 | 14.922900 | 101.473699 | 102.986884 | 355.252222 | 73° 8' 53" |
| 320 | 15.886128 | 101.668413 | 103.387488 | 336.287040 | 72° 5' 42" |
| 300 | 16.949763 | 101.904940 | 103.875990 | 317.474760 | 70° 54' 5" |
| 280 | 18.250135 | 102.160162 | 104.480264 | 298.858028 | 69° 32' 14" |
| 260 | 19.729226 | 102.564124 | 105.241136 | 280.497074 | 67° 57' 47" |
| 240 | 21.405587 | 103.025715 | 106.219200 | 262.454784 | 66° 7' 36" |
| 220 | 23.555838 | 103.632647 | 107.507994 | 244.863168 | 63° 57' 23" |
| 200 | 26.116574 | 104.447443 | 109.260480 | 227.898480 | 61° 21' 7" |
| 180 | 29.336487 | 105.580330 | 111.739482 | 211.862484 | 58° 10' 8" |
| 160 | 33.525185 | 107.228464 | 115.437376 | 197.296208 | 54° 11' 24" |
| 140 | 39.241137 | 109.779803 | 121.380952 | 185.292618 | 49° 4' 28" |
| 120 | 47.626016 | 114.104417 | 132.093348 | 178.401912 | 42° 15' 12" |
| 100 | 61.562643 | 122.619114 | 155.740770 | 185.081570 | 32° 42' 15" |
| 95 | 66.748734 | 126.148321 | 166.629316 | 191.808059 | 29° 41' 19" |
| 90 | 73.141390 | 130.727676 | 181.797084 | 202.855668 | 26° 20' 16" |
| 85 | 81.314301 | 136.905055 | 204.267512 | 221.246059 | 22° 35' 35" |
| 80 | 92.332784 | 145.717467 | 240.765568 | 253.708616 | 18° 22' 48" |
| 75 | 108.536763 | 159.466590 | 309.878850 | 318.825817 | 13° 36' 20" |
| 70 | 136.703450 | 184.926359 | 488.855143 | 493.841432 | 8° 8' 56" |
Table IV.—The Catenary of equal strength.
\[a = 100.\]
| \(y\) | \(x\) | \(z\) | \(\xi\) | \(T\) | Angle |
|------|------|------|--------|------|-------|
| 1 | .004999 | .999990 | 1.00001 | 100.00500 | 89° 25' 37" |
| 2 | .020003 | 2.000088 | 2.00022 | 100.020006 | 88° 51' 14" |
| 3 | .045005 | 3.000431 | 3.00088 | 100.045016 | 88° 16' 52" |
| 4 | .080021 | 4.001021 | 4.00208 | 100.080054 | 87° 42' 29" |
| 5 | .125046 | 5.002067 | 5.00415 | 100.125125 | 87° 8' 6" |
| 6 | .180107 | 6.003541 | 6.00714 | 100.180270 | 86° 33' 44" |
| 7 | .245198 | 7.005697 | 7.01143 | 100.245499 | 85° 59' 21" |
| 8 | .323389 | 8.008498 | 8.01706 | 100.320852 | 85° 24' 58" |
| 9 | .405548 | 9.012161 | 9.02436 | 100.406373 | 84° 50' 46" |
| 10 | .500828 | 10.016660 | 10.03343 | 100.502080 | 84° 16' 13" |
| 11 | .606218 | 11.022229 | 11.04456 | 100.608062 | 83° 41' 50" |
| 12 | .721234 | 12.028425 | 12.05789 | 100.723845 | 83° 7' 28" |
| 13 | .847386 | 13.030754 | 13.07372 | 100.850992 | 82° 33' 5" |
| 14 | .983205 | 14.045921 | 14.09215 | 100.980635 | 81° 58' 42" |
| 15 | 1.129248 | 15.050560 | 15.11351 | 101.135644 | 81° 24' 20" |
| 16 | 1.285490 | 16.068670 | 16.13791 | 101.293792 | 80° 49' 57" |
| 17 | 1.452011 | 17.082468 | 17.16567 | 101.462608 | 80° 15' 34" |
| 18 | 1.628815 | 18.097959 | 18.19691 | 101.642158 | 79° 41' 12" |
| 19 | 1.815961 | 19.115360 | 19.23197 | 101.832558 | 79° 6' 49" |
| 20 | 2.013470 | 20.134658 | 20.27097 | 102.033830 | 78° 32' 23" |
| 21 | 2.221395 | 21.150371 | 21.31424 | 102.246255 | 77° 58' 4" |
| 22 | 2.439770 | 22.170619 | 22.36191 | 102.469780 | 77° 23' 41" |
| 23 | 2.668051 | 23.205504 | 23.41433 | 102.704585 | 76° 49' 19" |
| 24 | 2.908061 | 24.233742 | 24.47164 | 102.950768 | 76° 14' 56" |
| 25 | 3.158106 | 25.264601 | 25.53424 | 103.208504 | 75° 40' 33" |
| 26 | 3.418774 | 26.297360 | 26.60212 | 103.477887 | 75° 6' 11" |
| 27 | 3.690164 | 27.334154 | 27.67581 | 103.759100 | 74° 31' 48" |
| 28 | 3.972311 | 28.373174 | 28.75540 | 104.052264 | 73° 57' 25" |
| 29 | 4.265294 | 29.415243 | 29.84128 | 104.357567 | 73° 23' 3" |
| 30 | 4.569158 | 30.460378 | 30.93360 | 104.675156 | 72° 48' 40" |
| 31 | 4.883083 | 31.508739 | 32.03269 | 105.005213 | 72° 14' 17" |
| 32 | 5.209839 | 32.560521 | 33.13891 | 105.347935 | 71° 39' 55" |
| 33 | 5.546782 | 33.615738 | 34.25243 | 105.703501 | 71° 5' 32" |
| 34 | 5.894915 | 34.674039 | 35.37366 | 106.072131 | 70° 31' 9" |
| 35 | 6.254281 | 35.737235 | 36.50280 | 106.454005 | 69° 56' 47" |
| 36 | 6.624997 | 36.803792 | 37.64030 | 106.849383 | 69° 22' 24" |
| 37 | 7.007106 | 37.874291 | 38.78626 | 107.258446 | 68° 48' 2" |
| 38 | 7.400749 | 38.948988 | 39.94126 | 107.681495 | 68° 13' 39" |
| 39 | 7.805067 | 40.027947 | 41.10545 | 108.118722 | 67° 39' 16" |
| 40 | 8.222888 | 41.111407 | 42.27931 | 108.570433 | 67° 4' 54" |
| 41 | 8.651889 | 42.199404 | 43.46038 | 109.036870 | 66° 30' 31" |
| 42 | 9.092196 | 43.292198 | 44.67242 | 109.518354 | 65° 56' 8" |
| 43 | 9.544771 | 44.389841 | 45.89509 | 110.015128 | 65° 21' 46" |
| 44 | 10.009478 | 45.492556 | 47.07804 | 110.527566 | 64° 47' 23" |
| 45 | 10.486371 | 46.600436 | 48.30547 | 111.042096 | 64° 13' 0" |
| 46 | 10.975622 | 47.713735 | 49.54487 | 111.606062 | 63° 38' 38" |
| 47 | 11.477312 | 48.832499 | 50.79655 | 112.161892 | 63° 4' 15" |
| 48 | 11.991595 | 49.957023 | 52.06108 | 112.740211 | 62° 29' 52" |
| 49 | 12.518572 | 51.08569 | 53.34078 | 113.335897 | 61° 55' 32" |
| 50 | 13.058418 | 52.223810 | 54.63024 | 113.949396 | 61° 21' 7" |
Table IV. continued.—The Catenary of equal strength.
\[ a = 100. \]
| y | x | z | ξ | T | Angle |
|-----|-------|-------|------|------|-------|
| 51 | 13.611226 | 53.366417 | 55.93584 | 114.581052 | 60° 46' 44" |
| 52 | 14.177189 | 54.515494 | 57.25618 | 115.231377 | 60° 12' 22" |
| 53 | 14.756401 | 55.676905 | 58.59167 | 115.900748 | 59° 37' 59" |
| 54 | 15.349977 | 56.833577 | 59.94296 | 116.589191 | 59° 3' 36" |
| 55 | 15.955315 | 58.002974 | 61.31049 | 117.298661 | 58° 29' 14" |
| 56 | 16.575346 | 59.170619 | 62.69495 | 118.028208 | 57° 54' 51" |
| 57 | 17.209276 | 60.363609 | 64.09582 | 118.778802 | 57° 20' 29" |
| 58 | 17.857313 | 61.555215 | 65.51678 | 119.510332 | 56° 46' 6" |
| 59 | 18.510976 | 62.754711 | 66.95554 | 120.345521 | 56° 11' 43" |
| 60 | 19.16491 | 63.962210 | 68.41302 | 121.162801 | 55° 37' 21" |
| 61 | 19.888020 | 65.178046 | 69.89186 | 122.003580 | 55° 2' 58" |
| 62 | 20.594400 | 66.402358 | 71.39084 | 122.868440 | 54° 28' 35" |
| 63 | 21.315910 | 67.635500 | 72.91145 | 123.758155 | 53° 54' 13" |
| 64 | 22.052701 | 68.877606 | 74.45432 | 124.673361 | 53° 19' 50" |
| 65 | 22.805074 | 70.129059 | 76.02042 | 125.614906 | 52° 45' 27" |
| 66 | 23.573186 | 71.389994 | 77.61043 | 126.583487 | 52° 11' 5" |
| 67 | 24.357371 | 72.660825 | 79.22540 | 127.580036 | 51° 36' 42" |
| 68 | 25.157787 | 73.941997 | 80.86608 | 128.605306 | 51° 2' 19" |
| 69 | 25.974778 | 75.233031 | 82.53360 | 129.660301 | 50° 27' 57" |
| 70 | 26.808551 | 76.535188 | 84.22878 | 130.745895 | 49° 53' 34" |
| 71 | 27.659459 | 77.848058 | 85.95285 | 131.863168 | 49° 19' 11" |
| 72 | 28.527710 | 79.172384 | 87.70674 | 133.013056 | 48° 44' 49" |
| 73 | 29.413697 | 80.508436 | 89.49175 | 134.196771 | 48° 10' 26" |
| 74 | 30.317647 | 81.856432 | 91.30890 | 135.415343 | 47° 36' 4" |
| 75 | 31.239989 | 83.216866 | 93.15964 | 136.670112 | 47° 1' 41" |
| 76 | 32.180960 | 84.589966 | 95.04510 | 137.962209 | 46° 27' 18" |
| 77 | 33.140961 | 85.975963 | 96.96618 | 139.293095 | 45° 52' 56" |
| 78 | 34.120421 | 87.375961 | 98.92611 | 140.664948 | 45° 18' 33" |
| 79 | 35.119618 | 88.789594 | 100.92453 | 142.076604 | 44° 44' 10" |
| 80 | 36.139051 | 90.214039 | 102.96381 | 143.532386 | 44° 9' 48" |
| 81 | 37.179043 | 91.660396 | 105.04542 | 145.032900 | 43° 35' 25" |
| 82 | 38.240111 | 93.118455 | 107.17133 | 146.579992 | 43° 1' 2" |
| 83 | 39.322622 | 94.592159 | 109.34320 | 148.175337 | 42° 26' 40" |
| 84 | 40.427139 | 96.082135 | 111.56319 | 149.821051 | 41° 52' 17" |
| 85 | 41.554052 | 97.588753 | 113.82816 | 151.518952 | 41° 17' 54" |
| 86 | 42.703987 | 99.112099 | 116.15555 | 153.271369 | 40° 43' 32" |
| 87 | 43.877350 | 100.654374 | 118.53239 | 155.083097 | 40° 9' 9" |
| 88 | 45.074822 | 102.214506 | 120.96637 | 156.948608 | 39° 34' 46" |
| 89 | 46.296874 | 103.793554 | 123.45986 | 158.878469 | 39° 0' 24" |
| 90 | 47.544231 | 105.392291 | 126.01578 | 160.872559 | 38° 26' 1" |
| 91 | 48.817411 | 107.011233 | 128.63685 | 162.933851 | 37° 51' 39" |
| 92 | 50.117199 | 108.651210 | 131.32634 | 165.065469 | 37° 17' 16" |
| 93 | 51.444173 | 110.312786 | 134.08729 | 167.270444 | 36° 42' 53" |
| 94 | 52.799201 | 111.996881 | 136.92343 | 169.552431 | 36° 8' 31" |
| 95 | 54.182891 | 113.704104 | 139.83816 | 171.914846 | 35° 34' 8" |
| 96 | 55.596244 | 115.435462 | 142.83573 | 174.361831 | 34° 59' 45" |
| 97 | 57.039914 | 117.191641 | 145.92002 | 176.897299 | 34° 25' 23" |
| 98 | 58.514946 | 118.973717 | 149.09580 | 179.525931 | 33° 51' 0" |
| 99 | 60.032087 | 120.782488 | 152.36759 | 182.252247 | 33° 16' 37" |
| 100 | 61.562647 | 122.619117 | 155.74077 | 185.081573 | 32° 42' 15" |