Two Theorems, by Edward Waring, M. A. Lucasian Professor of Mathematics in the University of Cambridge, and F. R. S. In a Letter to Charles Morton, M. D. Sec. R. S.
Author(s)
Edward Waring
Year
1765
Volume
55
Pages
5 pages
Language
la
Journal
Philosophical Transactions (1683-1775)
Full Text (OCR)
XXII. Two Theorems, by Edward Waring, M. A. Lucasian Professor of Mathematics in the University of Cambridge, and F. R. S. In a Letter to Charles Morton, M. D. Sec. R. S.
THEOREMA I.
FIGURA I.
Read April 25, 1765.
IN datâ Ellipsi inscribantur duo (n) Laterum Polygona \(abcde\), &c. et \(pqrst\), &c. ad Puncta respectiva \(a, b, c, d, e, \&c.\). \(p, q, r, s, t, \&c.\) ducantur Tangentes \(AB, BC, CD, DE, \&c.\) et \(PQ, QR, RS, ST, \&c.\) et sint
\[\angle abB = \angle cbC, \quad \angle bcC = \angle dcD, \quad \angle cdD = \angle edE, \&c.\] et \[\angle pqQ = \angle rqR, \quad \angle qrR = \angle srS, \quad \angle rsS = \angle tsT,\] et sic deinceps.
Et erit Summa Laterum
\[ab + bc + cd + de + \&c. = pq + qr + rs + st + \&c.\]
FIGURA 2.
Cor. Ducatur in Ellipsi Polygonum \(abcde\) &c. (n) Laterum Methodo supra traditâ; inscribatur etiam aliud Polygonum \(abhklm\) &c. (n) Laterum quovis alio.
alio Modo, cujus unus Angulus ponitur ad Punctum (a), et Summa $ab + bc + cd + de + \ldots$ &c. major est quam Summa $ab + bk + kl + lm + \ldots$ &c.
**THEOREMA II.**
**TAB. IV. FIGURA I.**
Describantur circa datam Ellipsim duo (n) Laterum Polygona ABCDE &c. et PQRS T &c. quorum Puncta Contactuum respective sunt $a, b, c, d, e,$ &c. et $p, q, r, s, t,$ &c.
Et sint
$\text{Tang.} + \text{Seca. Comp.} \angle aBb : \text{Tan.} + \text{Seca. Comp.}$
$\angle cCb :: bC : bB,$ et
$\text{Tang.} + \text{Seca. Comp.} \angle cCb : \text{Tan.} + \text{Seca. Comp.}$
$\angle cDd :: cD : cC,$ et
$\text{Tang.} + \text{Seca. Comp.} \angle cDd : \text{Tan.} + \text{Seca. Comp.}$
$\angle eEd :: Ed : aD$ &c.
Et sic
$\text{Tang.} + \text{Seca. Comp.} \angle pQq : \text{Tan.} + \text{Seca. Comp.}$
$\angle qRr :: qR : qQ,$ et
$\text{Tang.} + \text{Seca. Comp.} \angle qRr : \text{Tan.} + \text{Seca. Comp.}$
$\angle sSr :: Sr : rR,$ et
$\text{Tang.} + \text{Seca. Comp.} \angle sSr : \text{Tan.} + \text{Seca. Comp.}$
$\angle tTs :: Ts : sS,$ et sic deinceps.
Et erit Summa Laterum
$AB + BC + CD + DE + \ldots = PQ + QR + RS + ST + \ldots$
**FIGURA**
Figura 3.
Cor. Describatur circa Ellipsim Polygonum (n) Laterum A B C D E, &c. Methodo, quae prius data fuit; Describatur etiam circa Ellipsim aliud Polygonum G H K L M, &c. (n) Laterum quavis aliâ Methodo, cujus unum Punctum Contactus (a) est Punctum Contactus Polygoni A B C D E, &c.
Et Summa A B + B C + C D + D E + &c. minor erit quam Summa G H + H K + K L + L M + &c.
Consimiles Proprietates affirmari possunt de Polygonis Hyperbolas descriptis, &c.