Johannes Castillioneus Dno. de Montagny, V. D. Philosoph. Prof. in Acad. Lauzannesi, Reg. Soc. Lond. Soc. &c. De Curva Cardioide, de Figura sua Sic Dicta

Author(s) Johannes Castillioneus
Year 1739
Volume 41
Pages 6 pages
Language la
Journal Philosophical Transactions (1683-1775)

Full Text (OCR)

send it to the Royal Society, with a Figure of the Infant, with the Parts in their proper Site. One thing I cannot pass in Silence, viz. how the Circulation could be carried on, the Heart being thus inverted; and yet the Child lived several Days after Birth. I observed the Heart from its Basis, whence the Aorta and pulmonary Artery spring, and where the Cava and pulmonary Vein enter it, to its Cone, surrounded loosely with several Windings of these Vessels, through which the Blood's Circulation must necessarily be performed. A wonderful Sagacity in Nature! but I shall reserve the rest for my Tract. VIII. Johannes Caßillioneus Dno. de Montagny, V.D. Philosoph.Prof. in Acad. Lauzannesii, Reg. Soc. Lond. Soc.&c. de Curva Cardioide, de Figura sua sic dicta. S. P. NON ignoro, V.C. novarum curvarum investigationem, tanquam nimis Analystis facilem, contemni: Cum tamen D. Carré, non mediocris Geometra Regiæ Scientiarum Academiæ, (28 Feb. 1705.) novam curvam, quamquam vix summa sequens fastigia rerum, proponere non dubitârit; cur tibi, viro in amicos benignissimo, nonnulla, quæ mihi ejusdem Carré dissertationem legenti venerunt in mentem, scribere non ausim? Sed procemiis omissis, ad rem. Semicirculi BMA, (Fig. 1. 2. 3. Tab. III.) diameter BA, ita, puncto B peripheriam radens, ut semper trans- transeat per punctum \( A \) gignet curvam, de qua agitur. Ex generatione patet, 1° Quod \( DA \alpha \) normalis ad \( AB \), æquat diametri duplum. 2° Quod hujus curvae peripheria \( ADN \alpha \) \( NA \) finiet in \( A \). Curvam hanc a figura Cardioïdem, si placet, appellabimus. Jam per \( a \), &c \( A \) ducantur \( aE \), \( AQ \) normales ad \( aA \), & ubi libet \( EN \) normalis ad \( aE \): Ex genesi erit \( AN = BA + AM \), &c (per similitudinem triangulorum \( QAN, MBA \)) \( AQ = BM + MP \), ac \( NQ = MA + AP \). Hæc est præcipua hujus curvae proprietas, altera non injucunda est, quod recta \( NN \) semper æquat diametri duplum, & semper a circulo bisecatur in \( M \). Sit nunc \( BA = a \), \( aE = x \), \( EN = y \), Erunt \( QN = \pm y + 2a \), \( AN = \sqrt{x^2 + y^2 - 4ay + 4a^2} \), & \( MA = \pm a + \sqrt{x^2 + y^2 - 4ay + 4a^2} \); quæ quatuor lineæ per analogiam comparatae, dant æquationem ad curvam. \[ \begin{align*} y^4 - 6ay^3 + 2x^2y^2 - 6ax^2y + x^4 \\ + 12a^2y^2 - 8a^3y + 3a^2x^2 \end{align*} \] Curvae subtangens juxta vulgatas methodos, est \[ \frac{2y^4 - 9ay^3 + 2x^2y^2 + 12a^2y^2 - 3ax^2y - 4ay^3}{6axy - 2xy^2 - 3a^2x - 2x^3} = x \] Sed ex curvae generatione facilius ducendæ tangentis ratio deduci potest. Veniat \( MAN \) in locum primo quamproximum \( mAn \), sumantur \( AR = AM \), & \( Ar = AN \), & junctis \( MR, Nr \), ducatur per \( A \) recta AT iis parallela, &c per Mm, Nn, rectae MT, nt. Jam nA : At :: nr (vel mR) : rN : mR × MA : rN × AM :: mR × MA : MR × AN :: MA × Am : AN × AT, sed in ultima ratione mA = MA, & TA normalis ad MN, quare nA : At :: MA² : AN × AT; si nunc ex M ducatur per circuli centrum F, recta MF producenda, donec. recta TA item productae occurrat in G, id est, usque ad circuli peripheriam, erit MA² = TA × AG; quapropter mA : At :: AG : AN; describatur igitur semicir- culus per G, & N, qui secabit rectam AT in t, ex quo ducta recta tN erit tangens ad curvam, ad quam insuper recta NG est normalis; hinc jungantur MO, cui ex N ducatur parallela, quae tanget curvam. Hic obiter notandum puto hanc ducendarum tan- gentium methodum probe convenire pluribus curvis. Sit AB, Fig. 2. Conchois Nicomedæa: Tunc (supposita superiori præparatione) BP : Pt :: BR, (vel cr) : Rb :: cr × CP : Rb × CP, (vel rC × PR) :: CP² : TP × PR, unde deducitur superior constructio. Recta longitudinis datae Fig. 3. CPB, extremitate C radens rectam CDT ad DA normalem, semper transeat per punctum P datum in ipsa DA, & ita curvam AB gignat. Superiorem præparationem, & ratiocinium huic aptans habebis BP : Pt :: bR (rc) : RB :: cr × CP : RB × CP (BP × rC) :: CP² : BP × PT, ut supra. Piget plura referre. Cæterum methodus de maximis, & minimis dat maximam ordinatam = \frac{9a}{4}, & ejus abscissam = \frac{a\sqrt{3}}{4}. Posset codem pacto investigari abscissarum maxima; sed longae ambages, series sed longa laborum; quare sic eam quaerito. Quia \(EN\), Fig. 1. est tangens ad curvam, recta \(MG\) ex puncto \(M\) per centrum \(F\) ducta determinat punctum \(G\), ex quo ducta \(GN\) est normalis ad \(EN\), ergo & ad \(AA\), ex hypothese, sed \(NQ = AV = MA + AP\); ergo \(VP = MA\); atqui \(BA : AM :: MA : AP\); ergo \(BA : PV :: VP : PA\); sed \(PF = FV = a - 2z\); & ideo \(a : a - 2z :: a - 2z : z\). Unde facile deduitur \(z = \frac{a}{4}, EN = \frac{7a}{4}, AQ = \frac{3a}{4} \sqrt{3}\). Ubi notandum quod idem punctum \(M\), quod praebet in recta \(NAMN\) punctum majoris ordinatæ, praebet etiam punctum majoris absissæ. Sed jam satis patientia tua abusus videor: quare finem faciam, nonnulla alia, quæ de hac curva commentatus sum, propediem missurus, si putes hæc & similia non indigna, quæ a te subcisivis horis legantur. Vale, Vir, quo neque candidiorem Terra tulit, neque cui me sit devinctior alter. Viviaci, pridie Kalendas Apriles 1741. IX. Ad Eclipses Terræ repræsentandas, Machina J. And. Segneri, Med. Physic. & Mathem. Prof. Goetting, R. S. S. Ut eclipsis aliqua terræ oculis exhibeatur spectanda, projectio arcuum & circulorum, qui in hemisphærio terræ illuminato concipiuntur, in planum, servire potest egregie: Sique in ejusmodi projectionem